The scripts and input files that accompany this demo can be found in the 
demos/public directory of the Rosetta weekly releases.
KEYWORDS: RNA
This README was written in May 2015, by Fang-Chieh Chou (fcchou@stanford.edu).
This demo illustrates the RECCES pipeline for computing the folding free energy of RNA helices. To keep it simple, we just show how to run RECCES simulated tempering (ST) on one construct.
Python codes needed to run the job are located at tools/recces/. You need to include this path into your PYTHONPATH to run the following demo. The python codes have only been tested with Python v2.7.
We first do a quick a prerun. First create a separate folder:
  mkdir prerun
  cd prerun/  recces_turner -score:weights stepwise/rna/turner -rna:farna:thermal_sampling:n_cycle 300000 -seq1 gu -seq2 ac -rna:farna:thermal_sampling:temps 0.8 -rna:farna:thermal_sampling:out_prefix prerun
  recces_turner -score:weights stepwise/rna/turner -rna:farna:thermal_sampling:n_cycle 300000 -seq1 gu -seq2 ac -rna:farna:thermal_sampling:temps 1.0 -rna:farna:thermal_sampling:out_prefix prerun
  recces_turner -score:weights stepwise/rna/turner -rna:farna:thermal_sampling:n_cycle 300000 -seq1 gu -seq2 ac -rna:farna:thermal_sampling:temps 1.4 -rna:farna:thermal_sampling:out_prefix prerun
  recces_turner -score:weights stepwise/rna/turner -rna:farna:thermal_sampling:n_cycle 300000 -seq1 gu -seq2 ac -rna:farna:thermal_sampling:temps 1.8 -rna:farna:thermal_sampling:out_prefix prerun
  recces_turner -score:weights stepwise/rna/turner -rna:farna:thermal_sampling:n_cycle 300000 -seq1 gu -seq2 ac -rna:farna:thermal_sampling:temps 3.0 -rna:farna:thermal_sampling:out_prefix prerun
  recces_turner -score:weights stepwise/rna/turner -rna:farna:thermal_sampling:n_cycle 300000 -seq1 gu -seq2 ac -rna:farna:thermal_sampling:temps 7.0 -rna:farna:thermal_sampling:out_prefix prerun
  recces_turner -score:weights stepwise/rna/turner -rna:farna:thermal_sampling:n_cycle 300000 -seq1 gu -seq2 ac -rna:farna:thermal_sampling:temps 30  -rna:farna:thermal_sampling:out_prefix prerunThe ST weights can then be determined using the following code snippet:
  from recces.util import weight_evaluate
  weight_evaluate('./', 'prerun_hist_scores.gz')Now we create a new folder ST and run simulated tempering:
  mkdir ST
  recces_turner -score:weights stepwise/rna/turner -seq1 gu -seq2 ac -rna:farna:thermal_sampling:n_cycle 9000000 -rna:farna:thermal_sampling:temps 0.8 1 1.4 1.8 3 7 30 -st_weights 0 7.33 14.6 17.32 18.87 18.34 17.09 -rna:farna:thermal_sampling:out_prefix ST -save_score_terms  recces_turner -score:weights stepwise/rna/turner -seq1 gu -seq2 ac -rna:farna:thermal_sampling:n_cycle 300000 -rna:farna:thermal_sampling:temps -1 -rna:farna:thermal_sampling:out_prefix kT_inf -save_score_termsAfter the end of the run, the free energy can be computed using python codes:
  from recces.data import SingleSimulation, KT_IN_KCAL, N_SCORE_TERMS
  curr_wt = [0.73, 0.1, 0.0071, 0, 4.26, 2.46, 0.25, 0, 1.54, 4.54]
  sim = SingleSimulation('ST/', curr_wt)
  print sim.value, sim.value * KT_IN_KCALexample_output directory, the values in kT and in kcal/mol were: 1.35766728357 0.836772916126. In an independent rerun, we got: 1.25722532755 0.774867389305.
We may also reweight the score function and obtain the new free energy:
  import numpy as np
  sim.reweight(np.ones(N_SCORE_TERMS))
  print sim.value, sim.value * KT_IN_KCALexample_output directory, we get: 31.8988957998 19.660289662. In an independent rerun, we got: 31.9550773046 19.694916085.
To determine the nearest neighbor energies, you need to add/subtract several free energies based on simulations of several single-stranded and double-stranded constructs.