Back to SimpleMetrics page.
Autogenerated Tag Syntax Documentation:
A PerResidueProbabilitiesMetric that stores amino acid probabilities predicted by the MIF-ST model.
References and author information for the MIFSTProbabilitiesMetric simple metric:
MIFSTProbabilitiesMetric SimpleMetric's author(s): Moritz Ertelt, University of Leipzig moritz.ertelt@gmail.com
<MIFSTProbabilitiesMetric name="(&string;)" custom_type="(&string;)"
residue_selector="(&string;)" feature_selector="(&string;)"
multirun="(true &bool;)" use_gpu="(false &bool;)" />
A metric for estimating the probability of an amino acid at a given position, as predicted by the Masked Inverse Folding with Sequence Transfer (MIF-ST) model from Yang et al.. This metric requires to be build with extras=torch
, see Building Rosetta with TensorFlow and Torch for the compilation setup.
The example predicts the amino acid probabilities for chain A using only the coordinates and sequence of chain A.It does so by running one prediction for each position while masking its residue type. With multirun=true
& use_gpu=true
all predictions are batched together and run on the GPU (if available). Lastly it uses these predictions to score the current sequence using the pseudo-perplexity metric.
<ROSETTASCRIPTS>
<RESIDUE_SELECTORS>
<Chain name="res" chains="A" />
</RESIDUE_SELECTORS>
<SIMPLE_METRICS>
<MIFSTProbabilitiesMetric name="prediction" residue_selector="res" feature_selector="res" multirun="true" use_gpu="true"/>
<PseudoPerplexityMetric name="perplex" metric="prediction"/>
</SIMPLE_METRICS>
<FILTERS>
</FILTERS>
<MOVERS>
<RunSimpleMetrics name="run" metrics="perplex"/>
</MOVERS>
<PROTOCOLS>
<Add mover_name="run"/>
</PROTOCOLS>
</ROSETTASCRIPTS>
@article {Yang2022.05.25.493516,
author = {Kevin K. Yang and Hugh Yeh and Niccol{\`o} Zanichelli},
title = {Masked Inverse Folding with Sequence Transfer for Protein Representation Learning},
elocation-id = {2022.05.25.493516},
year = {2023},
doi = {10.1101/2022.05.25.493516},
publisher = {Cold Spring Harbor Laboratory},
URL = {https://www.biorxiv.org/content/early/2023/03/19/2022.05.25.493516},
eprint = {https://www.biorxiv.org/content/early/2023/03/19/2022.05.25.493516.full.pdf},
journal = {bioRxiv}
}