Back to SimpleMetrics page.
Autogenerated Tag Syntax Documentation:
A metric for estimating the probability of an amino acid at a given position, as predicted by ProteinMPNN.
References and author information for the ProteinMPNNProbabilitiesMetric simple metric:
ProteinMPNNProbabilitiesMetric SimpleMetric's author(s): Moritz Ertelt, University of Leipzig [moritz.ertelt@gmail.com]
<ProteinMPNNProbabilitiesMetric name="(&string;)" custom_type="(&string;)"
write_pssm="(&string;)" residue_selector="(&string;)"
coord_selector="(&string;)" sequence_mask_selector="(&string;)" >
<TiedPositions residue_selectors="(&string;)" />
</ProteinMPNNProbabilitiesMetric>
Subtag TiedPositions:
A metric for estimating the probability of an amino acid at a given position, as predicted by the ProteinMPNN model. This metric requires to be build with extras=torch
, see Building Rosetta with TensorFlow and Torch for the compilation setup.
The example predicts the amino acid identities for chain A using only the coordinates of chain A, while masking the sequence of position 25 and uses the predicted probabilities to score the sequence.
<ROSETTASCRIPTS>
<RESIDUE_SELECTORS>
<Chain name="res" chains="A" />
<Index name="mask" resnums="25"/>
</RESIDUE_SELECTORS>
<SIMPLE_METRICS>
<ProteinMPNNProbabilitiesMetric name="prediction" residue_selector="res" coord_selector="res" sequence_mask_selector="mask" write_pssm="mpnn.pssm"/>
<PseudoPerplexityMetric name="perplex" metric="prediction"/>
</SIMPLE_METRICS>
<FILTERS>
</FILTERS>
<MOVERS>
<RunSimpleMetrics name="run" metrics="perplex"/>
</MOVERS>
<PROTOCOLS>
<Add mover_name="run"/>
</PROTOCOLS>
</ROSETTASCRIPTS>
@article{dauparas2022robust,
title={Robust deep learning--based protein sequence design using ProteinMPNN},
author={Dauparas, Justas and Anishchenko, Ivan and Bennett, Nathaniel and Bai, Hua and Ragotte, Robert J and Milles, Lukas F and Wicky, Basile IM and Courbet, Alexis and de Haas, Rob J and Bethel, Neville and others},
journal={Science},
volume={378},
number={6615},
pages={49--56},
year={2022},
publisher={American Association for the Advancement of Science}
}