|
template<Size N> |
void | polycubic_interpolation (numeric::interpolation::InterpolatedPotential< N > const &interpolated_potential, utility::fixedsizearray1< Real, N > const &values, Real &score, utility::fixedsizearray1< Real, N > &dscoreddof) |
|
template<typename X , typename F > |
F | interpolated (X const &x, X const &x1, X const &x2, F const &f1, F const &f2) |
| Linearly interpolated value: f( x ) More...
|
|
template<typename X , typename F > |
F | interpolated (X const &a, F const &f1, F const &f2) |
| Linearly interpolated value: f( x ) More...
|
|
template<typename X , typename F > |
F | interpolated_delta (X const &a, F const &f1, F const &f2) |
| Linearly interpolated delta value: f( x ) - f1. More...
|
|
template<typename X , typename Y , typename F > |
F | bilinearly_interpolated (X const &x, X const &x1, X const &x2, Y const &y, Y const &y1, Y const &y2, F const &f11, F const &f12, F const &f21, F const &f22) |
| Bilinearly interpolated value: f( x, y ) More...
|
|
template<typename X , typename Y , typename F > |
F | bilinearly_interpolated (X const &ax, Y const &ay, F const &f11, F const &f12, F const &f21, F const &f22) |
| Bilinearly interpolated value. More...
|
|
template<typename X , typename Y , typename F > |
F | bilinearly_interpolated (X const &ax, Y const &ay, X const &bx, Y const &by, F const &f11, F const &f12, F const &f21, F const &f22) |
| Bilinearly interpolated value. More...
|
|
template<Size N> |
void | polycubic_interpolation (utility::fixedsizearray1< utility::fixedsizearray1< Real,(1<< N) >,(1<< N) > n_derivs, utility::fixedsizearray1< Real, N > dbbp, utility::fixedsizearray1< Real, N > binwbb, Real &val, utility::fixedsizearray1< Real, N > &dvaldbb) |
| Perform cubic interpolation over each of N axes, using the 2^N derivatives at 2^N gridpoints. More...
|
|
spline::SplineGenerator | spline_from_file (std::string const &filename, platform::Real const &bin_size) |
| given a file, return a 2D spline More...
|
|
Perform cubic interpolation over each of N axes, using the 2^N derivatives at 2^N gridpoints.
The way encoding gridpoints and derivatives into a linear structure like this is actually pretty simple. Imagine the "right or left" part of a cube, or the "derivative taken or not" on a particular variable, as zero or one. Then "just
the actual function value" maps to 000, the z derivative (for example) maps to 001, d2/dydz maps to 011, etc.
- Parameters
-
[in] | n_derivs | is a 2^N x 2^N matrix: 2^N derivatives at 2^N gridpoints |
[in] | dbbp | is how far along the bin our target point is, in each direction |
[in] | binwbb | is the bin width in each direction |
[out] | val | is the interpolated value |
[out] | dvaldbb | are the interpolated derivatives |
References test.T200_Scoring::ii.
given a file, return a 2D spline
read in a file, read out a spline. The file should be tab separated, and have two lines The first field of one line should be "x_axis", the next fields should be the x values of the points for the spline The first field of the other line should be "y_axis", the next fields should be the y values for the points on the spline For an example, see "scoring/constraints/epr_distance_potential.histogram"
References numeric::interpolation::spline::SplineGenerator::add_boundary_function(), numeric::interpolation::spline::SplineGenerator::add_known_value(), utility::io::izstream::close(), clean_pdb_keep_ligand::count, basic::options::OptionKeys::cp::cutoff, utility::from_string(), ObjexxFCL::getline(), ObjexxFCL::index(), line, utility::io::izstream::open(), utility::string_split(), tag, ObjexxFCL::trim(), and utility_exit_with_message.