Rosetta
|
Functions | |
def | get_common_int_coords_2 (x, y, z) |
def | get_common_int_coords (x, y, z) |
def | load_centroid (fn, ncluster) |
def | load_centroid_xyz (fn, ncluster) |
Variables | |
float | cutoff = 1.6 |
restype = sys.argv[1] | |
ncluster = int(sys.argv[2]) | |
string | inpfile = "./split/" + restype + ".dat" |
inp = open(inpfile,'r') | |
lines = inp.readlines() | |
skip = int(len(lines)/10000) | |
list | colorlist = ['r', 'b', 'g', 'y', 'c', 'm', 'k', 'w', 'r'] |
list | marklist = ['o', '^', '+', '>', (5,2), (5,0)] |
list | xyzlist = [] |
list | bblist = [] |
dats = line.split() | |
dis = float(dats[0]) | |
ang = float(dats[1]) | |
dih = float(dats[2]) | |
psi = float(dats[3]) | |
phi = float(dats[4]) | |
x = dis*sin(ang)*cos(dih) | |
y = dis*sin(ang)*sin(dih) | |
z = dis*cos(ang) | |
data = vstack(xyzlist) | |
cluster, find the centroid More... | |
save_data = data | |
string | fn = "refine/" + restype + ".xyz" |
def | centroids = load_centroid_xyz(fn, ncluster) |
_ | |
idx | |
assign More... | |
dist | |
nd = len(data) | |
savend = nd | |
fig = plt.figure() | |
ax = fig.add_subplot(111, projection='3d') | |
float | R = 2.0 |
list | c = colorlist[i] |
string | m = '.' |
flag = i | |
xs = save_data[flag, 0] | |
ys = save_data[flag, 1] | |
zs = save_data[flag, 2] | |
n = len(xs) | |
s | |
marker | |
r = sqrt(x*x+y*y+z*z) | |
t = arccos(z/r) | |
p = arctan2(y,x) | |
u | |
v | |
color | |
def kmeans_common.get_common_int_coords | ( | x, | |
y, | |||
z | |||
) |
References numeric.arccos(), and ObjexxFCL.len().
def kmeans_common.get_common_int_coords_2 | ( | x, | |
y, | |||
z | |||
) |
References numeric.arccos(), and ObjexxFCL.len().
def kmeans_common.load_centroid | ( | fn, | |
ncluster | |||
) |
References run_backbone.float, ObjexxFCL.len(), and basic::database.open().
def kmeans_common.load_centroid_xyz | ( | fn, | |
ncluster | |||
) |
References run_backbone.float, ObjexxFCL.len(), and basic::database.open().
|
private |
kmeans_common.ang = float(dats[1]) |
kmeans_common.ax = fig.add_subplot(111, projection='3d') |
list kmeans_common.bblist = [] |
kmeans_common.centroids = load_centroid_xyz(fn, ncluster) |
kmeans_common.color |
kmeans_common.cutoff = 1.6 |
kmeans_common.data = vstack(xyzlist) |
cluster, find the centroid
kmeans_common.dats = line.split() |
kmeans_common.dih = float(dats[2]) |
kmeans_common.dis = float(dats[0]) |
kmeans_common.dist |
kmeans_common.fig = plt.figure() |
kmeans_common.flag = i |
string kmeans_common.fn = "refine/" + restype + ".xyz" |
kmeans_common.idx |
assign
string kmeans_common.inpfile = "./split/" + restype + ".dat" |
kmeans_common.lines = inp.readlines() |
string kmeans_common.m = '.' |
kmeans_common.marker |
list kmeans_common.marklist = ['o', '^', '+', '>', (5,2), (5,0)] |
kmeans_common.n = len(xs) |
kmeans_common.ncluster = int(sys.argv[2]) |
kmeans_common.nd = len(data) |
kmeans_common.phi = float(dats[4]) |
kmeans_common.psi = float(dats[3]) |
kmeans_common.R = 2.0 |
kmeans_common.restype = sys.argv[1] |
kmeans_common.s |
kmeans_common.save_data = data |
kmeans_common.savend = nd |
kmeans_common.skip = int(len(lines)/10000) |
kmeans_common.u |
kmeans_common.v |
list kmeans_common.xyzlist = [] |