Rosetta
|
Unit headers. More...
Classes | |
class | AgglomerativeHierarchicalClusterer |
class | AverageLinkClusterer |
class | BodyPosition |
Rigid body 3-D position/transform. More... | |
class | Calculator |
class | CalculatorParser |
class | ClusteringTreeNode |
class | ClusterOptions |
class | ColPointers |
class | ColsPointer |
class | ColVectors |
class | CompleteLinkClusterer |
class | EulerAngles |
Euler angles 3-D orientation representation. More... | |
struct | FastRemainderSelector |
Fast remainder function selector class for non-integer types. More... | |
struct | FastRemainderSelector< T, true > |
Fast remainder function selector class for integer types. More... | |
class | HomogeneousTransform |
class | HomogeneousTransform_Double |
class | IntervalSet |
class | IntervalSet_Double |
struct | IOTraits |
Numerics input/output type traits. More... | |
struct | IOTraits< double > |
Numerics input/output type traits double specialization. More... | |
struct | IOTraits< float > |
Numerics input/output type traits float Specialization. More... | |
struct | IOTraits< int > |
Numerics input/output type traits int specialization. More... | |
struct | IOTraits< long double > |
Numerics input/output type traits long double specialization. More... | |
struct | IOTraits< long int > |
: Numerics input/output type traits long int specialization More... | |
struct | IOTraits< short int > |
Numerics input/output type traits short int specialization. More... | |
struct | IOTraits< unsigned int > |
: Numerics input/output type traits unsigned int specialization More... | |
struct | IOTraits< unsigned long int > |
Numerics input/output type traits unsigned long int specialization. More... | |
struct | IOTraits< unsigned short int > |
: Numerics input/output type traits unsigned short int specialization More... | |
class | MathMatrix |
class | MathNTensor |
class | MathTensor |
class | MathVector |
struct | ModSelector |
Mod function selector class for non-integer types. More... | |
struct | ModSelector< T, true > |
Mod function selector class for integer types. More... | |
struct | ModuloSelector |
Modulo function selector class for non-integer types. More... | |
struct | ModuloSelector< T, true > |
Modulo function selector class for integer types. More... | |
class | MultiDimensionalHistogram |
a class for accumulating a histogram of one or more numeric variables More... | |
struct | NearestSelector |
Nearest function selector class for R non-integer or T integer. More... | |
struct | NearestSelector< R, T, true > |
Nearest function selector class for R integer and T non-integer. More... | |
struct | NumericTraits |
NumericTraits: Numeric type traits. More... | |
struct | NumericTraits< double > |
NumericTraits: Numeric type traits double specialization. More... | |
struct | NumericTraits< float > |
NumericTraits: Numeric type traits float specialization. More... | |
struct | NumericTraits< long double > |
NumericTraits: Numeric type traits long double specialization. More... | |
class | Polynomial_1d |
class | Py_xyzTransform_double |
class | Quaternion |
Unit quaternion 3-D orientation representation. More... | |
struct | RemainderSelector |
Remainder function selector class for non-integer types. More... | |
struct | RemainderSelector< T, true > |
Remainder function selector class for integer types. More... | |
class | RocCurve |
class | RocPoint |
class | RowPointers |
class | RowsPointer |
class | RowVectors |
class | SingleLinkClusterer |
class | sphericalVector |
sphericalVector: Fast spherical-coordinate numeric vector More... | |
class | UniformRotationSampler |
struct | urs_Quat |
struct | XformHash32 |
struct | XformHash64 |
struct | Xforms |
class | xyzMatrix |
xyzMatrix: Fast 3x3 xyz matrix template More... | |
class | xyzTransform |
class | xyzTriple |
Fast (x,y,z)-coordinate vector container. More... | |
class | xyzVector |
xyzVector: Fast (x,y,z)-coordinate numeric vector More... | |
Enumerations | |
enum | RocStatus { true_positive, true_negative, false_positive, false_negative } |
Functions | |
template<class T > | |
void | get_cluster_data (utility::vector1< T > &data_in, ClusteringTreeNodeOP cluster, utility::vector1< T > &data_out) |
template<typename T > | |
T | principal_angle (T const &angle) |
Principal value of angle in radians on ( -pi, pi ]. More... | |
template<typename T > | |
T | principal_angle_radians (T const &angle) |
Principal value of angle in radians on ( -pi, pi ]. More... | |
template<typename T > | |
T | principal_angle_degrees (T const &angle) |
Principal value of angle in degrees on ( -180, 180 ]. More... | |
template<typename T > | |
T | nonnegative_principal_angle (T const &angle) |
Positive principal value of angle in radians on [ 0, 2*pi ) More... | |
template<typename T > | |
T | nonnegative_principal_angle_radians (T const &angle) |
Positive principal value of angle in radians on [ 0, 2*pi ) More... | |
template<typename T > | |
T | nonnegative_principal_angle_degrees (T const &angle) |
Positive principal value of angle in degrees on [ 0, 360 ) More... | |
template<typename T > | |
T | nearest_angle (T const &angle, T const &base_angle) |
Nearest periodic value of angle to a base angle in radians. More... | |
template<typename T > | |
T | nearest_angle_radians (T const &angle, T const &base_angle) |
Nearest periodic value of angle to a base angle in radians. More... | |
template<typename T > | |
T | nearest_angle_degrees (T const &angle, T const &base_angle) |
Nearest periodic value of angle to a base angle in degrees. More... | |
template<typename T > | |
bool | operator== (BodyPosition< T > const &p1, BodyPosition< T > const &p2) |
BodyPosition == BodyPosition. More... | |
template<typename T > | |
bool | operator!= (BodyPosition< T > const &p1, BodyPosition< T > const &p2) |
BodyPosition != BodyPosition. More... | |
template<typename T > | |
std::ostream & | operator<< (std::ostream &stream, BodyPosition< T > const &p) |
stream << BodyPosition output operator More... | |
template<typename T > | |
std::istream & | operator>> (std::istream &stream, BodyPosition< T > &p) |
stream >> BodyPosition input operator More... | |
template<typename T > | |
std::istream & | read_row (std::istream &stream, T &x, T &y, T &z, T &t) |
Read an BodyPosition row from a stream. More... | |
void | do_add_symbol (CalculatorParser &cp, std::string name, double value) |
double | do_abs (double a) |
double | do_pow (double a, double b) |
double | do_exp (double a) |
double | do_ln (double a) |
double | do_log10 (double a) |
double | do_log2 (double a) |
double | do_log (double a, double b) |
double | do_sqrt (double a) |
double | do_sin (double a) |
double | do_cos (double a) |
double | do_tan (double a) |
double | do_max (std::vector< double > a) |
double | do_min (std::vector< double > a) |
double | do_mean (std::vector< double > a) |
double | do_median (std::vector< double > a) |
numeric::xyzVector < platform::Real > | rgb_to_hsv (platform::Real r, platform::Real b, platform::Real g) |
convert an RGB color to HSV More... | |
numeric::xyzVector < platform::Real > | rgb_to_hsv (numeric::xyzVector< platform::Real > rgb_triplet) |
convert and RGB color to HSV More... | |
numeric::xyzVector < platform::Real > | hsv_to_rgb (platform::Real h, platform::Real s, platform::Real v) |
convert an HSV color to RGB More... | |
numeric::xyzVector < platform::Real > | hsv_to_rgb (numeric::xyzVector< platform::Real > hsv_triplet) |
convert an HSV color to RGB More... | |
void | ccd_angle (utility::vector1< xyzVector< Real > > const &F, utility::vector1< xyzVector< Real > > const &M, xyzVector< Real > const &axis_atom, xyzVector< Real > const &theta_hat, Real &alpha, Real &S) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &stream, HomogeneousTransform< T > const &ht) |
std::ostream & | operator<< (std::ostream &stream, HomogeneousTransform< double > const &ht) |
template<class Value > | |
double | linear_interpolate (Value start, Value stop, unsigned curr_stage, unsigned num_stages) |
Linearly interpolates a quantity from start to stop over (num_stages + 1) stages. More... | |
template<typename T > | |
std::ostream & | operator<< (std::ostream &output, const IntervalSet< T > &interval) |
template<typename T > | |
MathMatrix< T > & | operator+= (MathMatrix< T > &MATRIX_LHS, const MathMatrix< T > &MATRIX_RHS) |
add one matrix to another More... | |
template<typename T > | |
MathMatrix< T > & | operator-= (MathMatrix< T > &MATRIX_LHS, const MathMatrix< T > &MATRIX_RHS) |
subtract one matrix from another More... | |
template<typename T > | |
MathMatrix< T > & | operator/= (MathMatrix< T > &MATRIX_LHS, const MathMatrix< T > &) |
divide one matrix by another More... | |
template<typename T > | |
MathMatrix< T > & | operator+= (MathMatrix< T > &MATRIX_LHS, const T &VALUE) |
add scalar to matrix More... | |
template<typename T > | |
MathMatrix< T > & | operator-= (MathMatrix< T > &MATRIX_LHS, const T &VALUE) |
subtract scalar from matrix More... | |
template<typename T > | |
MathMatrix< T > & | operator*= (MathMatrix< T > &MATRIX_LHS, const T &SCALAR) |
multiply matrix with scalar More... | |
template<typename T > | |
MathMatrix< T > & | operator/= (MathMatrix< T > &MATRIX_LHS, const T &SCALAR) |
divide matrix by scalar More... | |
template<typename T > | |
bool | operator== (const MathMatrix< T > &MATRIX_LHS, const MathMatrix< T > &MATRIX_RHS) |
compare to matricess for equality More... | |
template<typename T > | |
bool | operator!= (const MathMatrix< T > &MATRIX_LHS, const MathMatrix< T > &MATRIX_RHS) |
compare to matrices for inequality More... | |
template<typename T > | |
bool | operator== (const MathMatrix< T > &MATRIX_LHS, const T &VALUE_RHS) |
compare if all items in matrix are equal to a given VALUE More... | |
template<typename T > | |
bool | operator== (const T &VALUE_LHS, const MathMatrix< T > &MATRIX_RHS) |
compare if all items in matrix are equal to a given VALUE More... | |
template<typename T > | |
bool | operator!= (const MathMatrix< T > &MATRIX_LHS, const T &VALUE_RHS) |
compare if all items in matrix are not equal to a given VALUE More... | |
template<typename T > | |
bool | operator!= (const T &VALUE_LHS, const MathMatrix< T > &MATRIX_RHS) |
compare if all items in matrix are not equal to a given VALUE More... | |
template<typename T > | |
MathMatrix< T > | operator+ (const MathMatrix< T > &MATRIX_LHS, const MathMatrix< T > &MATRIX_RHS) |
sum two matrixs of equal size More... | |
template<typename T > | |
MathMatrix< T > | operator- (const MathMatrix< T > &MATRIX_LHS, const MathMatrix< T > &MATRIX_RHS) |
subtract two matrixs of equal size More... | |
template<typename T > | |
MathMatrix< T > | operator* (const MathMatrix< T > &MATRIX_LHS, const MathMatrix< T > &MATRIX_RHS) |
multiply two matrixs of equal size by building the inner product yielding the scalar product More... | |
template<typename T > | |
MathMatrix< T > | operator+ (const MathMatrix< T > &MATRIX_LHS, const T &VALUE_RHS) |
add value to matrix More... | |
template<typename T > | |
MathMatrix< T > | operator+ (const T &VALUE_LHS, const MathMatrix< T > &MATRIX_RHS) |
add matrix to value More... | |
template<typename T > | |
MathMatrix< T > | operator- (const MathMatrix< T > &MATRIX_LHS, const T &VALUE_RHS) |
subtract value from matrix More... | |
template<typename T > | |
MathMatrix< T > | operator- (const T &VALUE_LHS, const MathMatrix< T > &MATRIX_RHS) |
subtract matrix from value More... | |
template<typename T > | |
MathMatrix< T > | operator* (const T &SCALAR_LHS, const MathMatrix< T > &MATRIX_RHS) |
multiply scalar with matrix More... | |
template<typename T > | |
MathMatrix< T > | operator* (const MathMatrix< T > &MATRIX_LHS, const T &SCALAR_RHS) |
multiply matrix with scalar More... | |
template<typename T > | |
MathVector< T > | operator* (const MathMatrix< T > &MATRIX_LHS, const MathVector< T > &VECTOR_RHS) |
multiply matrix with vector More... | |
template<typename T > | |
MathMatrix< T > | operator/ (const MathMatrix< T > &MATRIX_LHS, const T &SCALAR_RHS) |
divide matrix with scalar More... | |
template<typename T > | |
MathMatrix< T > | operator/ (const T &SCALAR_LHS, const MathMatrix< T > &MATRIX_RHS) |
divide scalar by matrix More... | |
template<typename T > | |
T | distance (MathVector< T > const &VECTOR_A, MathVector< T > const &VECTOR_B) |
template<typename T > | |
T | proj_angl (MathVector< T > const &VECTOR_A, MathVector< T > const &VECTOR_B, MathVector< T > const &VECTOR_C, MathVector< T > const &VECTOR_D) |
template<typename T > | |
T | proj_angl (MathVector< T > const &VECTOR_A, MathVector< T > const &VECTOR_B, MathVector< T > const &VECTOR_C) |
template<typename T > | |
T | proj_angl (MathVector< T > const &VECTOR_A, MathVector< T > const &VECTOR_B) |
template<typename T > | |
T | scalar_product (MathVector< T > const &VECTOR_A, MathVector< T > const &VECTOR_B) |
template<typename T > | |
MathVector< T > | MakeVector (T const &X) |
template<typename T > | |
MathVector< T > | MakeVector (T const &X, T const &Y) |
template<typename T > | |
MathVector< T > | MakeVector (T const &X, T const &Y, T const &Z) |
template<typename T > | |
MathVector< T > | operator- (MathVector< T > const &VECTOR) |
template<typename T > | |
MathVector< T > | operator+ (MathVector< T > const &VECTOR) |
template<typename T > | |
bool | operator== (MathVector< T > const &VECTOR_A, MathVector< T > const &VECTOR_B) |
template<typename T > | |
bool | operator!= (MathVector< T > const &VECTOR_A, MathVector< T > const &VECTOR_B) |
template<typename T > | |
bool | operator== (MathVector< T > const &VECTOR, T const &X) |
template<typename T > | |
bool | operator!= (MathVector< T > const &VECTOR, T const &X) |
template<typename T > | |
bool | operator== (T const &X, MathVector< T > const &VECTOR) |
template<typename T > | |
bool | operator!= (T const &X, MathVector< T > const &VECTOR) |
template<typename T > | |
MathVector< T > | operator+ (MathVector< T > const &VECTOR_A, MathVector< T > const &VECTOR_B) |
template<typename T > | |
MathVector< T > | operator- (MathVector< T > const &VECTOR_A, MathVector< T > const &VECTOR_B) |
template<typename T > | |
MathVector< T > | operator+ (MathVector< T > const &VECTOR, T const &X) |
template<typename T > | |
MathVector< T > | operator- (MathVector< T > const &VECTOR, T const &X) |
template<typename T > | |
MathVector< T > | operator+ (T const &X, MathVector< T > const &VECTOR) |
template<typename T > | |
MathVector< T > | operator- (T const &X, MathVector< T > const &VECTOR) |
template<typename T > | |
T | operator* (MathVector< T > const &VECTOR_A, MathVector< T > const &VECTOR_B) |
template<typename T > | |
MathVector< T > | operator* (T const &X, MathVector< T > const &VECTOR) |
template<typename T > | |
MathVector< T > | operator* (MathVector< T > const &VECTOR, T const &X) |
template<typename T > | |
MathVector< T > | operator/ (MathVector< T > const &VECTOR, T const &X) |
template<typename T > | |
MathVector< T > | operator/ (MathVector< T > const &VECTOR_A, MathVector< T > const &VECTOR_B) |
template<typename T > | |
MathVector< T > | operator/ (T const &X, MathVector< T > const &VECTOR) |
template<typename T > | |
MathVector< T > | operator^ (T const &X, MathVector< T > const &VECTOR) |
std::ostream & | operator<< (std::ostream &os, MultiDimensionalHistogram const &mdhist) |
short int | min (short int const a, short int const b) |
min( short int, short int ) More... | |
int | min (int const a, int const b) |
min( int, int ) More... | |
long int | min (long int const a, long int const b) |
min( long int, long int ) More... | |
unsigned short int | min (unsigned short int const a, unsigned short int const b) |
min( unsigned short int, unsigned short int ) More... | |
unsigned int | min (unsigned int const a, unsigned int const b) |
min( unsigned int, unsigned int ) More... | |
unsigned long int | min (unsigned long int const a, unsigned long int const b) |
min( unsigned long int, unsigned long int ) More... | |
float | min (float const a, float const b) |
min( float, float ) More... | |
double | min (double const a, double const b) |
min( double, double ) More... | |
long double | min (long double const a, long double const b) |
min( long double, long double ) More... | |
template<typename T > | |
T const & | min (T const &a, T const &b, T const &c) |
min( a, b, c ) More... | |
template<typename T > | |
T const & | min (T const &a, T const &b, T const &c, T const &d) |
min( a, b, c, d ) More... | |
template<typename T > | |
T const & | min (T const &a, T const &b, T const &c, T const &d, T const &e) |
min( a, b, c, d, e ) More... | |
template<typename T > | |
T const & | min (T const &a, T const &b, T const &c, T const &d, T const &e, T const &f) |
min( a, b, c, d, e, f ) More... | |
short int | max (short int const a, short int const b) |
max( short int, short int ) More... | |
int | max (int const a, int const b) |
max( int, int ) More... | |
long int | max (long int const a, long int const b) |
max( long int, long int ) More... | |
unsigned short int | max (unsigned short int const a, unsigned short int const b) |
max( unsigned short int, unsigned short int ) More... | |
unsigned int | max (unsigned int const a, unsigned int const b) |
max( unsigned int, unsigned int ) More... | |
unsigned long int | max (unsigned long int const a, unsigned long int const b) |
max( unsigned long int, unsigned long int ) More... | |
float | max (float const a, float const b) |
max( float, float ) More... | |
double | max (double const a, double const b) |
max( double, double ) More... | |
long double | max (long double const a, long double const b) |
max( long double, long double ) More... | |
template<typename T > | |
T const & | max (T const &a, T const &b, T const &c) |
max( a, b, c ) More... | |
template<typename T > | |
T const & | max (T const &a, T const &b, T const &c, T const &d) |
max( a, b, c, d ) More... | |
template<typename T > | |
T const & | max (T const &a, T const &b, T const &c, T const &d, T const &e) |
max( a, b, c, d, e ) More... | |
template<typename T > | |
T const & | max (T const &a, T const &b, T const &c, T const &d, T const &e, T const &f) |
max( a, b, c, d, e, f ) More... | |
template<typename T > | |
T | square (T const &x) |
square( x ) == x^2 More... | |
template<typename T > | |
T | cube (T const &x) |
cube( x ) == x^3 More... | |
template<typename T > | |
int | sign (T const &x) |
sign( x ) More... | |
template<typename S , typename T > | |
T | sign_transfered (S const &sigma, T const &x) |
Sign transfered value. More... | |
template<typename T > | |
T | abs_difference (T const &a, T const &b) |
Absolute difference. More... | |
template<typename R , typename T > | |
R | nearest (T const &x) |
nearest< R >( x ): Nearest R More... | |
template<typename T > | |
std::size_t | nearest_size (T const &x) |
nearest_size( x ): Nearest std::size_t More... | |
template<typename T > | |
SSize | nearest_ssize (T const &x) |
nearest_ssize( x ): Nearest SSize More... | |
template<typename T > | |
int | nearest_int (T const &x) |
nearest_int( x ): Nearest int More... | |
template<typename T > | |
int | nint (T const &x) |
nint( x ): Nearest int More... | |
template<typename T > | |
T | mod (T const &x, T const &y) |
x(mod y) computational modulo returning magnitude < | y | and sign of x More... | |
template<typename T > | |
T | modulo (T const &x, T const &y) |
x(mod y) mathematical modulo returning magnitude < | y | and sign of y More... | |
template<typename T > | |
T | remainder (T const &x, T const &y) |
Remainder of x with respect to division by y that is of smallest magnitude. More... | |
template<typename T > | |
T | fast_remainder (T const &x, T const &y) |
Remainder of x with respect to division by y that is of smallest magnitude. More... | |
template<typename T , typename S > | |
T | remainder_conversion (T const &t, S &s) |
Remainder and result of conversion to a different type. More... | |
template<typename T > | |
T | gcd (T const &m, T const &n) |
Greatest common divisor. More... | |
template<typename T > | |
bool | eq_tol (T const &x, T const &y, T const &r_tol, T const &a_tol) |
Equal within specified relative and absolute tolerances? More... | |
template<typename T > | |
bool | lt_tol (T const &x, T const &y, T const &r_tol, T const &a_tol) |
Less than within specified relative and absolute tolerances? More... | |
template<typename T > | |
bool | le_tol (T const &x, T const &y, T const &r_tol, T const &a_tol) |
Less than or equal within specified relative and absolute tolerances? More... | |
template<typename T > | |
bool | ge_tol (T const &x, T const &y, T const &r_tol, T const &a_tol) |
Greater than or equal within specified relative and absolute tolerances? More... | |
template<typename T > | |
bool | gt_tol (T const &x, T const &y, T const &r_tol, T const &a_tol) |
Greater than within specified relative and absolute tolerances? More... | |
bool | is_a_finitenumber (double s, double a, double b) |
template<typename T > | |
xyzVector< T > | first_principal_component (utility::vector1< xyzVector< T > > const &coords) |
return the first principal component of the given set of points More... | |
template<typename T > | |
xyzMatrix< T > | principal_components (utility::vector1< xyzVector< T > > const &coords) |
return a matrix containing the first 3 principal components of the given set of points. Matrix columns are principal components, first column is first component, etc. More... | |
template<typename T > | |
xyzVector< T > | principal_component_eigenvalues (utility::vector1< xyzVector< T > > const &coords) |
return a vector containing the eigenvalues corresponding to the first 3 principal components of the given set of points. More... | |
template<typename T > | |
std::pair< xyzMatrix< T > , xyzVector< T > > | principal_components_and_eigenvalues (utility::vector1< xyzVector< T > > const &coords) |
return a pair containing a matrix of the first 3 principal components and a vector of the corresponding eigenvalues of the given set of points. More... | |
std::pair< utility::vector1 < utility::vector1< Real > >, utility::vector1< Real > > | principal_components_and_eigenvalues_ndimensions (utility::vector1< utility::vector1< Real > > const &coords, bool const shift_center) |
Return a pair containing a matrix (vector of vectors) of all of the principal components and a vector of the corresponding eigenvalues of the given set of points in n-dimensional space. More... | |
ostream & | operator<< (ostream &out, const Polynomial_1d &poly) |
void | read_probabilities_or_die (const std::string &filename, utility::vector1< double > *probs) |
Loads normalized, per-residue probabilities from filename, storing the result in probs. Assumes line i holds the probability of sampling residue i. There must be 1 line for each residue in the pose on which this data will be used. More... | |
void | print_probabilities (const utility::vector1< double > &probs, std::ostream &out) |
Writes probs to the specified ostream. More... | |
template<class InputIterator > | |
double | sum (InputIterator first, InputIterator last) |
Returns the sum of all elements on the range [first, last) More... | |
template<class InputIterator > | |
void | normalize (InputIterator first, InputIterator last) |
Normalizes elements on the range [first, last) More... | |
template<class RandomAccessIterator > | |
void | cumulative (RandomAccessIterator first, RandomAccessIterator last) |
Converts pdf to cdf. More... | |
template<class ForwardIterator > | |
void | product (ForwardIterator probs1_first, ForwardIterator probs1_last, ForwardIterator probs2_first, ForwardIterator probs2_last) |
Multiplies two probability vectors with one another. Probability vectors are assumed to have equal lengths. More... | |
template<typename T > | |
Quaternion< T > | operator* (Quaternion< T > const &q2, Quaternion< T > const &q1) |
Quaternion * Quaternion. More... | |
template<typename T > | |
Quaternion< T > | product (Quaternion< T > const &q2, Quaternion< T > const &q1, bool const precise) |
Product: Quaternion * Quaternion. More... | |
template<typename T > | |
bool | operator== (Quaternion< T > const &q1, Quaternion< T > const &q2) |
Quaternion == Quaternion. More... | |
template<typename T > | |
bool | operator!= (Quaternion< T > const &q1, Quaternion< T > const &q2) |
Quaternion != Quaternion. More... | |
template<typename T > | |
T | dot (Quaternion< T > const &q1, Quaternion< T > const &q2) |
Dot product. More... | |
template<typename T > | |
T | dot_product (Quaternion< T > const &q1, Quaternion< T > const &q2) |
Dot product. More... | |
template<typename T > | |
std::ostream & | operator<< (std::ostream &stream, Quaternion< T > const &q) |
stream << Quaternion output operator More... | |
template<typename T > | |
std::istream & | operator>> (std::istream &stream, Quaternion< T > &q) |
stream >> Quaternion input operator More... | |
template<typename T > | |
T | sec (T const &x) |
Secant. More... | |
template<typename T > | |
T | csc (T const &x) |
Cosecant. More... | |
template<typename T > | |
T | cot (T const &x) |
Cotangent. More... | |
template<typename T > | |
bool | in_sin_cos_range (T const &x, T const &tol=T(.001)) |
Is a sine or cosine value within a specified tolerance of the valid [-1,1] range? More... | |
template<typename T > | |
T | sin_cos_range (T const &x, T const &tol=T(.001)) |
Adjust a sine or cosine value to the valid [-1,1] range if within a specified tolerance or exit with an error. More... | |
template<typename T > | |
T | arccos (T const x) |
like std::acos but with range checking More... | |
double | urs_norm4 (double a, double b, double c, double d) |
platform::Real | urs_R2ang (numeric::xyzMatrix< Real > R) |
numeric::Real | median (utility::vector1< numeric::Real > const &values) |
Returns the median from a vector1 of Real values. More... | |
numeric::Real | mean (utility::vector1< numeric::Real > const &values) |
template<typename Number > | |
Number | clamp (Number value, Number lower_bound, Number upper_bound) |
Clamps to the closed interval [lower_bound, upper_bound]. Templated type must implement operator<. More... | |
double | log (double x, double base) |
Computes log(x) in the given base. More... | |
template<typename T > | |
bool | isnan (T value) |
portable check to see if a value is NaN. More... | |
template<typename T > | |
bool | isinf (T value) |
bool | equal_by_epsilon (numeric::Real value1, numeric::Real value2, numeric::Real epsilon) |
are two Real values are equal up to some epsilon More... | |
template<typename T > | |
T | max (utility::vector1< T > const &values) |
template<typename T > | |
T | min (utility::vector1< T > const &values) |
Real | boltzmann_accept_probability (Real const score_before, Real const score_after, Real const temperature) |
Calculates the acceptance probability of a given score-change at the given temperature, generally used in simulated annealing algorithms. Returns a value in the range (0-1). More... | |
template<typename T > | |
T | find_nearest_value (typename utility::vector1< T > const &input_list, T key, platform::Size min_index, platform::Size max_index) |
recursive binary search that finds the value closest to key. Call find_nearest_value(input_list,value) instead. It's the driver function for this function. This fails miserably (and silently!) on a non-sorted vector, so don't do that!. More... | |
template<typename T > | |
T | find_nearest_value (typename utility::vector1< T > const &input_list, T key) |
given a vector and an input value, return the value in the vector that is closest to the input This is a wrapper for find_nearest_value(input_list,key,min,max) and insures that you're sorted. More... | |
template<typename T > | |
T | wrap_2pi (T const &angle) |
Wrap the given angle in the range [0, 2 * pi). More... | |
template<typename T > | |
T | wrap_pi (T const &angle) |
Wrap the given angle in the range [-pi, pi). More... | |
template<typename T > | |
T | wrap_360 (T const &angle) |
Wrap the given angle in the range [0, 360). More... | |
template<typename T > | |
T | wrap_180 (T const &angle) |
Wrap the given angle in the range [-180, 180). More... | |
template<typename T > | |
xyzVector< T > | operator* (xyzMatrix< T > const &m, xyzVector< T > const &v) |
xyzMatrix * xyzVector More... | |
template<typename T > | |
xyzVector< T > | product (xyzMatrix< T > const &m, xyzVector< T > const &v) |
xyzMatrix * xyzVector product More... | |
template<typename T > | |
xyzVector< T > & | inplace_product (xyzMatrix< T > const &m, xyzVector< T > &v) |
xyzMatrix * xyzVector in-place product More... | |
template<typename T > | |
xyzVector< T > | transpose_product (xyzMatrix< T > const &m, xyzVector< T > const &v) |
xyzMatrix^T * xyzVector product More... | |
template<typename T > | |
xyzVector< T > & | inplace_transpose_product (xyzMatrix< T > const &m, xyzVector< T > &v) |
xyzMatrix^T * xyzVector in-place transpose product More... | |
template<typename T > | |
xyzMatrix< T > | outer_product (xyzVector< T > const &a, xyzVector< T > const &b) |
xyzVector xyzVector outer product More... | |
template<typename T > | |
xyzMatrix< T > | inverse (xyzMatrix< T > const &a) |
template<typename T > | |
xyzMatrix< T > | projection_matrix (xyzVector< T > const &v) |
geometric center More... | |
template<typename T > | |
void | dihedral_radians (xyzVector< T > const &p1, xyzVector< T > const &p2, xyzVector< T > const &p3, xyzVector< T > const &p4, T &angle) |
Dihedral (torsion) angle in radians: angle value passed. More... | |
template<typename T > | |
T | dihedral_radians (xyzVector< T > const &p1, xyzVector< T > const &p2, xyzVector< T > const &p3, xyzVector< T > const &p4) |
Dihedral (torsion) angle in radians: angle value returned. More... | |
template<typename T > | |
void | dihedral_degrees (xyzVector< T > const &p1, xyzVector< T > const &p2, xyzVector< T > const &p3, xyzVector< T > const &p4, T &angle) |
Dihedral (torsion) angle in degrees: angle value passed. More... | |
template<typename T > | |
T | dihedral_degrees (xyzVector< T > const &p1, xyzVector< T > const &p2, xyzVector< T > const &p3, xyzVector< T > const &p4) |
Dihedral (torsion) angle in degrees: angle value returned. More... | |
template<typename T > | |
void | dihedral (xyzVector< T > const &p1, xyzVector< T > const &p2, xyzVector< T > const &p3, xyzVector< T > const &p4, T &angle) |
Dihedral (torsion) angle in degrees: angle value passed. More... | |
template<typename T > | |
T | dihedral (xyzVector< T > const &p1, xyzVector< T > const &p2, xyzVector< T > const &p3, xyzVector< T > const &p4) |
Dihedral (torsion) angle in degrees: angle value returned. More... | |
template<typename T > | |
xyzMatrix< T > | rotation_matrix (xyzVector< T > const &axis, T const &theta) |
Rotation matrix for rotation about an axis by an angle in radians. More... | |
template<typename T > | |
xyzVector< T > | rotation_axis (xyzMatrix< T > const &R, T &theta) |
Transformation from rotation matrix to helical axis of rotation. More... | |
template<typename T > | |
xyzVector< T > | eigenvalue_jacobi (xyzMatrix< T > const &a, T const &tol) |
Classic Jacobi algorithm for the eigenvalues of a real symmetric matrix. More... | |
template<typename T > | |
xyzVector< T > | eigenvector_jacobi (xyzMatrix< T > const &a, T const &tol, xyzMatrix< T > &J) |
Classic Jacobi algorithm for the eigenvalues and eigenvectors of a real symmetric matrix. More... | |
template<typename T > | |
void | jacobi_rotation (xyzMatrix< T > const &m, int const i, int const j, xyzMatrix< T > &r) |
Jacobi rotation. More... | |
template<typename T > | |
sphericalVector< T > | xyz_to_spherical (xyzVector< T > const &xyz) |
template<typename T > | |
xyzVector< T > | spherical_to_xyz (sphericalVector< T > const &spherical) |
template<typename T > | |
xyzVector< T > | closest_point_on_line (xyzVector< T > const &p1, xyzVector< T > const &p2, xyzVector< T > const &q) |
xyzMatrix * xyzVector More... | |
template<typename T > | |
xyzVector< T > | center_of_mass (utility::vector1< xyzVector< T > > const &coords) |
calculate center of mass for coordinates More... | |
template<typename T > | |
void | angle_radians (xyzVector< T > const &p1, xyzVector< T > const &p2, xyzVector< T > const &p3, T &angle) |
Plane angle in radians: angle value passed. More... | |
template<typename T > | |
T | angle_radians (xyzVector< T > const &p1, xyzVector< T > const &p2, xyzVector< T > const &p3) |
Plane angle in radians: angle value returned. More... | |
double | angle_radians_double (xyzVector< double > const &p1, xyzVector< double > const &p2, xyzVector< double > const &p3) |
template<typename T > | |
T | angle_degrees (xyzVector< T > const &p1, xyzVector< T > const &p2, xyzVector< T > const &p3) |
Plane angle in degrees: angle value returned. More... | |
double | angle_degrees_double (xyzVector< double > const &p1, xyzVector< double > const &p2, xyzVector< double > const &p3) |
template<typename T > | |
T | angle_radians (xyzVector< T > const &p1, xyzVector< T > const &p2, xyzVector< T > const &p3, xyzVector< T > const &p4) |
Angle between two vectors in radians. More... | |
double | angle_radians_double (xyzVector< double > const &p1, xyzVector< double > const &p2, xyzVector< double > const &p3, xyzVector< double > const &p4) |
template<typename T > | |
T | angle_degrees (xyzVector< T > const &p1, xyzVector< T > const &p2, xyzVector< T > const &p3, xyzVector< T > const &p4) |
Angle between two vectors in radians. More... | |
double | angle_degrees_double (xyzVector< double > const &p1, xyzVector< double > const &p2, xyzVector< double > const &p3, xyzVector< double > const &p4) |
void | dihedral_radians_double (xyzVector< double > const &p1, xyzVector< double > const &p2, xyzVector< double > const &p3, xyzVector< double > const &p4, double &angle) |
double | dihedral_radians_double (xyzVector< double > const &p1, xyzVector< double > const &p2, xyzVector< double > const &p3, xyzVector< double > const &p4) |
void | dihedral_degrees_double (xyzVector< double > const &p1, xyzVector< double > const &p2, xyzVector< double > const &p3, xyzVector< double > const &p4, double &angle) |
double | dihedral_degrees_double (xyzVector< double > const &p1, xyzVector< double > const &p2, xyzVector< double > const &p3, xyzVector< double > const &p4) |
void | dihedral_double (xyzVector< double > const &p1, xyzVector< double > const &p2, xyzVector< double > const &p3, xyzVector< double > const &p4, double &angle) |
double | dihedral_double (xyzVector< double > const &p1, xyzVector< double > const &p2, xyzVector< double > const &p3, xyzVector< double > const &p4) |
template<typename T > | |
xyzMatrix< T > | rotation_matrix (xyzVector< T > const &axis_angle) |
template<typename T > | |
xyzMatrix< T > | rotation_matrix_radians (xyzVector< T > const &axis, T const &theta) |
Rotation matrix for rotation about an axis by an angle in radians. More... | |
template<typename T > | |
xyzMatrix< T > | rotation_matrix_degrees (xyzVector< T > const &axis, T const &theta) |
Rotation matrix for rotation about an axis by an angle in degrees. More... | |
template<typename T > | |
xyzMatrix< T > | x_rotation_matrix (T const &theta) |
Rotation matrix for rotation about the x axis by an angle in radians. More... | |
template<typename T > | |
xyzMatrix< T > | x_rotation_matrix_radians (T const &theta) |
Rotation matrix for rotation about the x axis by an angle in radians. More... | |
template<typename T > | |
xyzMatrix< T > | x_rotation_matrix_degrees (T const &theta) |
Rotation matrix for rotation about the x axis by an angle in degrees. More... | |
template<typename T > | |
xyzMatrix< T > | y_rotation_matrix (T const &theta) |
Rotation matrix for rotation about the y axis by an angle in radians. More... | |
template<typename T > | |
xyzMatrix< T > | y_rotation_matrix_radians (T const &theta) |
Rotation matrix for rotation about the y axis by an angle in radians. More... | |
template<typename T > | |
xyzMatrix< T > | y_rotation_matrix_degrees (T const &theta) |
Rotation matrix for rotation about the y axis by an angle in degrees. More... | |
template<typename T > | |
xyzMatrix< T > | z_rotation_matrix (T const &theta) |
Rotation matrix for rotation about the z axis by an angle in radians. More... | |
template<typename T > | |
xyzMatrix< T > | z_rotation_matrix_radians (T const &theta) |
Rotation matrix for rotation about the z axis by an angle in radians. More... | |
template<typename T > | |
xyzMatrix< T > | z_rotation_matrix_degrees (T const &theta) |
Rotation matrix for rotation about the z axis by an angle in degrees. More... | |
template<typename T > | |
xyzMatrix< T > | alignVectorSets (xyzVector< T > A1, xyzVector< T > B1, xyzVector< T > A2, xyzVector< T > B2) |
Helper function to find the rotation to optimally transform the vectors A1-B1 to vectors A2-B2. More... | |
template<typename T > | |
T | rotation_angle (xyzMatrix< T > const &R) |
Transformation from rotation matrix to magnitude of helical rotation. More... | |
template<typename T > | |
xyzVector< T > | rotation_axis_angle (xyzMatrix< T > const &R) |
Transformation from rotation matrix to compact axis-angle representation. More... | |
template<typename T > | |
xyzVector< T > | comma_seperated_string_to_xyz (std::string triplet) |
convert a string of comma separated values "0.2,0.4,0.3" to an xyzVector More... | |
template<typename T > | |
ObjexxFCL::FArray2D< T > | vector_of_xyzvectors_to_FArray (utility::vector1< xyzVector< T > > const &input) |
convert a vector1 of xyzVectors to an FArray2D More... | |
template<typename T > | |
utility::vector1< xyzVector< T > > | FArray_to_vector_of_xyzvectors (ObjexxFCL::FArray2D< T > const &input) |
convert an FArray2D to a vector of xyzVectors More... | |
template<typename T > | |
numeric::xyzMatrix< T > | FArray_to_xyzmatrix (ObjexxFCL::FArray2D< T > const &input) |
convert a 3x3 FArray 2D to an xyzMatrix More... | |
template<typename T > | |
ObjexxFCL::FArray2D< T > | xyzmatrix_to_FArray (numeric::xyzMatrix< T > const &input) |
convert an xyzMatrix to a 3x3 FArray 2D More... | |
template<typename T > | |
utility::json_spirit::Value | serialize (xyzVector< T > coords) |
Convert vector to a json_spirit Value. More... | |
template<typename T > | |
xyzVector< T > | deserialize (utility::json_spirit::mArray data) |
template<typename T > | |
xyzMatrix< T > | operator+ (xyzMatrix< T > const &a, xyzMatrix< T > const &b) |
xyzMatrix + xyzMatrix More... | |
template<typename T > | |
xyzMatrix< T > | operator+ (xyzMatrix< T > const &m, T const &t) |
xyzMatrix + T More... | |
template<typename T > | |
xyzMatrix< T > | operator+ (T const &t, xyzMatrix< T > const &m) |
T + xyzMatrix. More... | |
template<typename T > | |
xyzMatrix< T > | operator- (xyzMatrix< T > const &a, xyzMatrix< T > const &b) |
xyzMatrix - xyzMatrix More... | |
template<typename T > | |
xyzMatrix< T > | operator- (xyzMatrix< T > const &m, T const &t) |
xyzMatrix - T More... | |
template<typename T > | |
xyzMatrix< T > | operator- (T const &t, xyzMatrix< T > const &m) |
T - xyzMatrix. More... | |
template<typename T > | |
xyzMatrix< T > | operator* (xyzMatrix< T > const &a, xyzMatrix< T > const &b) |
xyzMatrix * xyzMatrix More... | |
template<typename T > | |
xyzMatrix< T > | operator* (xyzMatrix< T > const &m, T const &t) |
xyzMatrix * T More... | |
template<typename T > | |
xyzMatrix< T > | operator* (T const &t, xyzMatrix< T > const &m) |
T * xyzMatrix. More... | |
template<typename T > | |
xyzMatrix< T > | operator/ (xyzMatrix< T > const &m, T const &t) |
xyzMatrix / T More... | |
template<typename T > | |
bool | operator== (xyzMatrix< T > const &a, xyzMatrix< T > const &b) |
xyzMatrix == xyzMatrix More... | |
template<typename T > | |
bool | operator!= (xyzMatrix< T > const &a, xyzMatrix< T > const &b) |
xyzMatrix != xyzMatrix More... | |
template<typename T > | |
bool | operator< (xyzMatrix< T > const &a, xyzMatrix< T > const &b) |
xyzMatrix < xyzMatrix More... | |
template<typename T > | |
bool | operator<= (xyzMatrix< T > const &a, xyzMatrix< T > const &b) |
xyzMatrix <= xyzMatrix More... | |
template<typename T > | |
bool | operator>= (xyzMatrix< T > const &a, xyzMatrix< T > const &b) |
xyzMatrix >= xyzMatrix More... | |
template<typename T > | |
bool | operator> (xyzMatrix< T > const &a, xyzMatrix< T > const &b) |
xyzMatrix > xyzMatrix More... | |
template<typename T > | |
bool | operator== (xyzMatrix< T > const &m, T const &t) |
xyzMatrix == T More... | |
template<typename T > | |
bool | operator!= (xyzMatrix< T > const &m, T const &t) |
xyzMatrix != T More... | |
template<typename T > | |
bool | operator< (xyzMatrix< T > const &m, T const &t) |
xyzMatrix < T More... | |
template<typename T > | |
bool | operator<= (xyzMatrix< T > const &m, T const &t) |
xyzMatrix <= T More... | |
template<typename T > | |
bool | operator>= (xyzMatrix< T > const &m, T const &t) |
xyzMatrix >= T More... | |
template<typename T > | |
bool | operator> (xyzMatrix< T > const &m, T const &t) |
xyzMatrix > T More... | |
template<typename T > | |
bool | operator== (T const &t, xyzMatrix< T > const &m) |
T == xyzMatrix. More... | |
template<typename T > | |
bool | operator!= (T const &t, xyzMatrix< T > const &m) |
T != xyzMatrix. More... | |
template<typename T > | |
bool | operator< (T const &t, xyzMatrix< T > const &m) |
T < xyzMatrix. More... | |
template<typename T > | |
bool | operator<= (T const &t, xyzMatrix< T > const &m) |
T <= xyzMatrix. More... | |
template<typename T > | |
bool | operator>= (T const &t, xyzMatrix< T > const &m) |
T >= xyzMatrix. More... | |
template<typename T > | |
bool | operator> (T const &t, xyzMatrix< T > const &m) |
T > xyzMatrix. More... | |
template<typename T > | |
std::ostream & | operator<< (std::ostream &stream, xyzMatrix< T > const &m) |
stream << xyzMatrix output operator More... | |
template<typename T > | |
std::istream & | read_row (std::istream &stream, T &x, T &y, T &z) |
Read an xyzMatrix row from a stream. More... | |
template<typename T > | |
std::istream & | operator>> (std::istream &stream, xyzMatrix< T > &m) |
stream >> xyzMatrix input operator More... | |
template<typename T , class OutputIterator > | |
void | expand_xforms (OutputIterator container, xyzTransform< T > const &G1, xyzTransform< T > const &G2, xyzTransform< T > const &, int N=5, Real r=9e9, xyzVector< T > const &test_point=xyzVector< T >(Real(1.0), Real(3.0), Real(10.0))) |
template<typename T , class OutputIterator > | |
void | expand_xforms (OutputIterator container, xyzTransform< T > const &G1, xyzTransform< T > const &G2, int N=5, Real r=9e9, xyzVector< T > const &test_point=xyzVector< T >(Real(1.0), Real(3.0), Real(10.0))) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &stream, xyzTransform< T > const &m) |
stream << xyzTransform output operator More... | |
template<typename T > | |
std::istream & | operator>> (std::istream &stream, xyzTransform< T > &m) |
stream >> xyzTransform input operator More... | |
template<typename T > | |
xyzTriple< T > | operator+ (xyzTriple< T > const &a, xyzTriple< T > const &b) |
xyzTriple + xyzTriple More... | |
template<typename T > | |
xyzTriple< T > | operator+ (xyzTriple< T > const &v, T const &t) |
xyzTriple + T More... | |
template<typename T > | |
xyzTriple< T > | operator+ (T const &t, xyzTriple< T > const &v) |
T + xyzTriple. More... | |
template<typename T > | |
xyzTriple< T > | operator- (xyzTriple< T > const &a, xyzTriple< T > const &b) |
xyzTriple - xyzTriple More... | |
template<typename T > | |
xyzTriple< T > | operator- (xyzTriple< T > const &v, T const &t) |
xyzTriple - T More... | |
template<typename T > | |
xyzTriple< T > | operator- (T const &t, xyzTriple< T > const &v) |
T - xyzTriple. More... | |
template<typename T > | |
xyzTriple< T > | operator* (xyzTriple< T > const &v, T const &t) |
xyzTriple * T More... | |
template<typename T > | |
xyzTriple< T > | operator* (T const &t, xyzTriple< T > const &v) |
T * xyzTriple. More... | |
template<typename T > | |
xyzTriple< T > | operator/ (xyzTriple< T > const &v, T const &t) |
xyzTriple / T More... | |
template<typename T > | |
void | add (xyzTriple< T > const &a, xyzTriple< T > const &b, xyzTriple< T > &r) |
Add: xyzTriple + xyzTriple. More... | |
template<typename T > | |
void | add (xyzTriple< T > const &v, T const &t, xyzTriple< T > &r) |
Add: xyzTriple + T. More... | |
template<typename T > | |
void | add (T const &t, xyzTriple< T > const &v, xyzTriple< T > &r) |
Add: T + xyzTriple. More... | |
template<typename T > | |
void | subtract (xyzTriple< T > const &a, xyzTriple< T > const &b, xyzTriple< T > &r) |
Subtract: xyzTriple - xyzTriple. More... | |
template<typename T > | |
void | subtract (xyzTriple< T > const &v, T const &t, xyzTriple< T > &r) |
Subtract: xyzTriple - T. More... | |
template<typename T > | |
void | subtract (T const &t, xyzTriple< T > const &v, xyzTriple< T > &r) |
Subtract: T - xyzTriple. More... | |
template<typename T > | |
void | multiply (xyzTriple< T > const &v, T const &t, xyzTriple< T > &r) |
Multiply: xyzTriple * T. More... | |
template<typename T > | |
void | multiply (T const &t, xyzTriple< T > const &v, xyzTriple< T > &r) |
Multiply: T * xyzTriple. More... | |
template<typename T > | |
void | divide (xyzTriple< T > const &v, T const &t, xyzTriple< T > &r) |
Divide: xyzTriple / T. More... | |
template<typename T > | |
xyzTriple< T > | min (xyzTriple< T > const &a, xyzTriple< T > const &b) |
xyzTriple with min coordinates of two xyzTriples More... | |
template<typename T > | |
xyzTriple< T > | max (xyzTriple< T > const &a, xyzTriple< T > const &b) |
xyzTriple with max coordinates of two xyzTriples More... | |
template<typename T > | |
T | distance (xyzTriple< T > const &a, xyzTriple< T > const &b) |
Distance. More... | |
template<typename T > | |
T | distance_squared (xyzTriple< T > const &a, xyzTriple< T > const &b) |
Distance squared. More... | |
template<typename T > | |
T | dot (xyzTriple< T > const &a, xyzTriple< T > const &b) |
Dot product. More... | |
template<typename T > | |
T | dot_product (xyzTriple< T > const &a, xyzTriple< T > const &b) |
Dot product. More... | |
template<typename T > | |
T | inner_product (xyzTriple< T > const &a, xyzTriple< T > const &b) |
Inner product ( == dot product ) More... | |
template<typename T > | |
xyzTriple< T > | cross (xyzTriple< T > const &a, xyzTriple< T > const &b) |
Cross product. More... | |
template<typename T > | |
xyzTriple< T > | cross_product (xyzTriple< T > const &a, xyzTriple< T > const &b) |
Cross product. More... | |
template<typename T > | |
void | cross (xyzTriple< T > const &a, xyzTriple< T > const &b, xyzTriple< T > &c) |
Cross product: Return via argument (slightly faster) More... | |
template<typename T > | |
void | cross_product (xyzTriple< T > const &a, xyzTriple< T > const &b, xyzTriple< T > &c) |
Cross product: Return via argument (slightly faster) More... | |
template<typename T > | |
xyzTriple< T > | midpoint (xyzTriple< T > const &a, xyzTriple< T > const &b) |
Midpoint of 2 xyzTriples. More... | |
template<typename T > | |
void | midpoint (xyzTriple< T > const &a, xyzTriple< T > const &b, xyzTriple< T > &m) |
Midpoint of 2 xyzTriples: Return via argument (slightly faster) More... | |
template<typename T > | |
xyzTriple< T > | center (xyzTriple< T > const &a, xyzTriple< T > const &b) |
Center of 2 xyzTriples. More... | |
template<typename T > | |
void | center (xyzTriple< T > const &a, xyzTriple< T > const &b, xyzTriple< T > &m) |
Center of 2 xyzTriples: Return via argument (slightly faster) More... | |
template<typename T > | |
xyzTriple< T > | center (xyzTriple< T > const &a, xyzTriple< T > const &b, xyzTriple< T > const &c) |
Center of 3 xyzTriples. More... | |
template<typename T > | |
void | center (xyzTriple< T > const &a, xyzTriple< T > const &b, xyzTriple< T > const &c, xyzTriple< T > &m) |
Center of 3 xyzTriples: Return via argument (slightly faster) More... | |
template<typename T > | |
xyzTriple< T > | center (xyzTriple< T > const &a, xyzTriple< T > const &b, xyzTriple< T > const &c, xyzTriple< T > const &d) |
Center of 4 xyzTriples. More... | |
template<typename T > | |
void | center (xyzTriple< T > const &a, xyzTriple< T > const &b, xyzTriple< T > const &c, xyzTriple< T > const &d, xyzTriple< T > &m) |
Center of 4 xyzTriples: Return via argument (slightly faster) More... | |
template<typename T > | |
T | angle_of (xyzTriple< T > const &a, xyzTriple< T > const &b) |
Angle between two vectors (in radians on [ 0, pi ]) More... | |
template<typename T > | |
T | angle_of (xyzTriple< T > const &a, xyzTriple< T > const &b, xyzTriple< T > const &c) |
Angle formed by three consecutive points (in radians on [ 0, pi ]) More... | |
template<typename T > | |
T | cos_of (xyzTriple< T > const &a, xyzTriple< T > const &b) |
Cosine of angle between two vectors. More... | |
template<typename T > | |
T | cos_of (xyzTriple< T > const &a, xyzTriple< T > const &b, xyzTriple< T > const &c) |
Cosine of angle formed by three consecutive points. More... | |
template<typename T > | |
T | sin_of (xyzTriple< T > const &a, xyzTriple< T > const &b) |
Sine of angle between two vectors. More... | |
template<typename T > | |
T | sin_of (xyzTriple< T > const &a, xyzTriple< T > const &b, xyzTriple< T > const &c) |
Sine of angle formed by three consecutive points. More... | |
template<typename T > | |
bool | operator== (xyzTriple< T > const &a, xyzTriple< T > const &b) |
xyzTriple == xyzTriple More... | |
template<typename T > | |
bool | operator!= (xyzTriple< T > const &a, xyzTriple< T > const &b) |
xyzTriple != xyzTriple More... | |
template<typename T > | |
bool | operator< (xyzTriple< T > const &a, xyzTriple< T > const &b) |
xyzTriple < xyzTriple More... | |
template<typename T > | |
bool | operator<= (xyzTriple< T > const &a, xyzTriple< T > const &b) |
xyzTriple <= xyzTriple More... | |
template<typename T > | |
bool | operator>= (xyzTriple< T > const &a, xyzTriple< T > const &b) |
xyzTriple >= xyzTriple More... | |
template<typename T > | |
bool | operator> (xyzTriple< T > const &a, xyzTriple< T > const &b) |
xyzTriple > xyzTriple More... | |
template<typename T > | |
bool | operator== (xyzTriple< T > const &v, T const &t) |
xyzTriple == T More... | |
template<typename T > | |
bool | operator!= (xyzTriple< T > const &v, T const &t) |
xyzTriple != T More... | |
template<typename T > | |
bool | operator< (xyzTriple< T > const &v, T const &t) |
xyzTriple < T More... | |
template<typename T > | |
bool | operator<= (xyzTriple< T > const &v, T const &t) |
xyzTriple <= T More... | |
template<typename T > | |
bool | operator>= (xyzTriple< T > const &v, T const &t) |
xyzTriple >= T More... | |
template<typename T > | |
bool | operator> (xyzTriple< T > const &v, T const &t) |
xyzTriple > T More... | |
template<typename T > | |
bool | operator== (T const &t, xyzTriple< T > const &v) |
T == xyzTriple. More... | |
template<typename T > | |
bool | operator!= (T const &t, xyzTriple< T > const &v) |
T != xyzTriple. More... | |
template<typename T > | |
bool | operator< (T const &t, xyzTriple< T > const &v) |
T < xyzTriple. More... | |
template<typename T > | |
bool | operator<= (T const &t, xyzTriple< T > const &v) |
T <= xyzTriple. More... | |
template<typename T > | |
bool | operator>= (T const &t, xyzTriple< T > const &v) |
T >= xyzTriple. More... | |
template<typename T > | |
bool | operator> (T const &t, xyzTriple< T > const &v) |
T > xyzTriple. More... | |
template<typename T > | |
bool | equal_length (xyzTriple< T > const &a, xyzTriple< T > const &b) |
Equal length? More... | |
template<typename T > | |
bool | not_equal_length (xyzTriple< T > const &a, xyzTriple< T > const &b) |
Not equal length? More... | |
template<typename T > | |
std::ostream & | operator<< (std::ostream &stream, xyzTriple< T > const &v) |
stream << xyzTriple output operator More... | |
template<typename T > | |
std::istream & | operator>> (std::istream &stream, xyzTriple< T > &v) |
stream >> xyzTriple input operator More... | |
template<typename T > | |
platform::Size | hash_value (xyzVector< T > const &v) |
template<typename T > | |
xyzVector< T > | operator+ (xyzVector< T > const &a, xyzVector< T > const &b) |
xyzVector + xyzVector More... | |
template<typename T > | |
xyzVector< T > | operator+ (xyzVector< T > const &v, T const &t) |
xyzVector + T More... | |
template<typename T > | |
xyzVector< T > | operator+ (T const &t, xyzVector< T > const &v) |
T + xyzVector. More... | |
template<typename T > | |
xyzVector< T > | operator- (xyzVector< T > const &a, xyzVector< T > const &b) |
xyzVector - xyzVector More... | |
template<typename T > | |
xyzVector< T > | operator- (xyzVector< T > const &v, T const &t) |
xyzVector - T More... | |
template<typename T > | |
xyzVector< T > | operator- (T const &t, xyzVector< T > const &v) |
T - xyzVector. More... | |
template<typename T > | |
xyzVector< T > | operator* (xyzVector< T > const &v, T const &t) |
xyzVector * T More... | |
template<typename T > | |
xyzVector< T > | operator* (T const &t, xyzVector< T > const &v) |
T * xyzVector. More... | |
template<typename T > | |
xyzVector< T > | operator/ (xyzVector< T > const &v, T const &t) |
xyzVector / T More... | |
template<typename T > | |
void | add (xyzVector< T > const &a, xyzVector< T > const &b, xyzVector< T > &r) |
Add: xyzVector + xyzVector. More... | |
template<typename T > | |
void | add (xyzVector< T > const &v, T const &t, xyzVector< T > &r) |
Add: xyzVector + T. More... | |
template<typename T > | |
void | add (T const &t, xyzVector< T > const &v, xyzVector< T > &r) |
Add: T + xyzVector. More... | |
template<typename T > | |
void | subtract (xyzVector< T > const &a, xyzVector< T > const &b, xyzVector< T > &r) |
Subtract: xyzVector - xyzVector. More... | |
template<typename T > | |
void | subtract (xyzVector< T > const &v, T const &t, xyzVector< T > &r) |
Subtract: xyzVector - T. More... | |
template<typename T > | |
void | subtract (T const &t, xyzVector< T > const &v, xyzVector< T > &r) |
Subtract: T - xyzVector. More... | |
template<typename T > | |
void | multiply (xyzVector< T > const &v, T const &t, xyzVector< T > &r) |
Multiply: xyzVector * T. More... | |
template<typename T > | |
void | multiply (T const &t, xyzVector< T > const &v, xyzVector< T > &r) |
Multiply: T * xyzVector. More... | |
template<typename T > | |
void | divide (xyzVector< T > const &v, T const &t, xyzVector< T > &r) |
Divide: xyzVector / T. More... | |
template<typename T > | |
xyzVector< T > | min (xyzVector< T > const &a, xyzVector< T > const &b) |
xyzVector with min coordinates of two xyzVectors More... | |
template<typename T > | |
xyzVector< T > | max (xyzVector< T > const &a, xyzVector< T > const &b) |
xyzVector with max coordinates of two xyzVectors More... | |
template<typename T > | |
T | dot (xyzVector< T > const &a, xyzVector< T > const &b) |
Distance. More... | |
template<typename T > | |
T | dot_product (xyzVector< T > const &a, xyzVector< T > const &b) |
Dot product. More... | |
template<typename T > | |
T | inner_product (xyzVector< T > const &a, xyzVector< T > const &b) |
Inner product ( == dot product ) More... | |
template<typename T > | |
xyzVector< T > | cross (xyzVector< T > const &a, xyzVector< T > const &b) |
Cross product. More... | |
template<typename T > | |
xyzVector< T > | cross_product (xyzVector< T > const &a, xyzVector< T > const &b) |
Cross product. More... | |
template<typename T > | |
void | cross (xyzVector< T > const &a, xyzVector< T > const &b, xyzVector< T > &c) |
Cross product: Return via argument (slightly faster) More... | |
template<typename T > | |
void | cross_product (xyzVector< T > const &a, xyzVector< T > const &b, xyzVector< T > &c) |
Cross product: Return via argument (slightly faster) More... | |
template<typename T > | |
xyzVector< T > | midpoint (xyzVector< T > const &a, xyzVector< T > const &b) |
Midpoint of 2 xyzVectors. More... | |
template<typename T > | |
void | midpoint (xyzVector< T > const &a, xyzVector< T > const &b, xyzVector< T > &m) |
Midpoint of 2 xyzVectors: Return via argument (slightly faster) More... | |
template<typename T > | |
xyzVector< T > | center (xyzVector< T > const &a, xyzVector< T > const &b) |
Center of 2 xyzVectors. More... | |
template<typename T > | |
void | center (xyzVector< T > const &a, xyzVector< T > const &b, xyzVector< T > &m) |
Center of 2 xyzVectors: Return via argument (slightly faster) More... | |
template<typename T > | |
xyzVector< T > | center (xyzVector< T > const &a, xyzVector< T > const &b, xyzVector< T > const &c) |
Center of 3 xyzVectors. More... | |
template<typename T > | |
void | center (xyzVector< T > const &a, xyzVector< T > const &b, xyzVector< T > const &c, xyzVector< T > &m) |
Center of 3 xyzVectors: Return via argument (slightly faster) More... | |
template<typename T > | |
xyzVector< T > | center (xyzVector< T > const &a, xyzVector< T > const &b, xyzVector< T > const &c, xyzVector< T > const &d) |
Center of 4 xyzVectors. More... | |
template<typename T > | |
void | center (xyzVector< T > const &a, xyzVector< T > const &b, xyzVector< T > const &c, xyzVector< T > const &d, xyzVector< T > &m) |
Center of 4 xyzVectors: Return via argument (slightly faster) More... | |
template<typename T > | |
T | angle_of (xyzVector< T > const &a, xyzVector< T > const &b) |
Angle between two vectors (in radians on [ 0, pi ]) More... | |
template<typename T > | |
T | angle_of (xyzVector< T > const &a, xyzVector< T > const &b, xyzVector< T > const &c) |
Angle formed by three consecutive points (in radians on [ 0, pi ]) More... | |
template<typename T > | |
T | cos_of (xyzVector< T > const &a, xyzVector< T > const &b) |
Cosine of angle between two vectors. More... | |
template<typename T > | |
T | cos_of (xyzVector< T > const &a, xyzVector< T > const &b, xyzVector< T > const &c) |
Cosine of angle formed by three consecutive points. More... | |
template<typename T > | |
T | sin_of (xyzVector< T > const &a, xyzVector< T > const &b) |
Sine of angle between two vectors. More... | |
template<typename T > | |
T | sin_of (xyzVector< T > const &a, xyzVector< T > const &b, xyzVector< T > const &c) |
Sine of angle formed by three consecutive points. More... | |
template<typename T > | |
bool | operator== (xyzVector< T > const &a, xyzVector< T > const &b) |
xyzVector == xyzVector More... | |
template<typename T > | |
bool | operator!= (xyzVector< T > const &a, xyzVector< T > const &b) |
xyzVector != xyzVector More... | |
template<typename T > | |
bool | operator< (xyzVector< T > const &a, xyzVector< T > const &b) |
xyzVector < xyzVector More... | |
template<typename T > | |
bool | operator<= (xyzVector< T > const &a, xyzVector< T > const &b) |
xyzVector <= xyzVector More... | |
template<typename T > | |
bool | operator>= (xyzVector< T > const &a, xyzVector< T > const &b) |
xyzVector >= xyzVector More... | |
template<typename T > | |
bool | operator> (xyzVector< T > const &a, xyzVector< T > const &b) |
xyzVector > xyzVector More... | |
template<typename T > | |
bool | operator== (xyzVector< T > const &v, T const &t) |
xyzVector == T More... | |
template<typename T > | |
bool | operator!= (xyzVector< T > const &v, T const &t) |
xyzVector != T More... | |
template<typename T > | |
bool | operator< (xyzVector< T > const &v, T const &t) |
xyzVector < T More... | |
template<typename T > | |
bool | operator<= (xyzVector< T > const &v, T const &t) |
xyzVector <= T More... | |
template<typename T > | |
bool | operator>= (xyzVector< T > const &v, T const &t) |
xyzVector >= T More... | |
template<typename T > | |
bool | operator> (xyzVector< T > const &v, T const &t) |
xyzVector > T More... | |
template<typename T > | |
bool | operator== (T const &t, xyzVector< T > const &v) |
T == xyzVector. More... | |
template<typename T > | |
bool | operator!= (T const &t, xyzVector< T > const &v) |
T != xyzVector. More... | |
template<typename T > | |
bool | operator< (T const &t, xyzVector< T > const &v) |
T < xyzVector. More... | |
template<typename T > | |
bool | operator<= (T const &t, xyzVector< T > const &v) |
T <= xyzVector. More... | |
template<typename T > | |
bool | operator>= (T const &t, xyzVector< T > const &v) |
T >= xyzVector. More... | |
template<typename T > | |
bool | operator> (T const &t, xyzVector< T > const &v) |
T > xyzVector. More... | |
template<typename T > | |
bool | equal_length (xyzVector< T > const &a, xyzVector< T > const &b) |
Equal length? More... | |
template<typename T > | |
bool | not_equal_length (xyzVector< T > const &a, xyzVector< T > const &b) |
Not equal length? More... | |
template<typename T > | |
std::ostream & | operator<< (std::ostream &stream, xyzVector< T > const &v) |
stream << xyzVector output operator More... | |
template<typename T > | |
std::istream & | operator>> (std::istream &stream, xyzVector< T > &v) |
stream >> xyzVector input operator More... | |
template<typename T > | |
std::string | truncate_and_serialize_xyz_vector (xyzVector< T > vector, Real precision) |
Unit headers.
A collection of functions for working with probabilities.
Vector0's that can perform mathmatical functions.
construction/destructor of 3-D Matrix's with some functions
Mathmatical functions for the MathMatrix class.
construction/destructor of Matrix's with some functions
Tricubic spline for smoothly interpolating a function in 3 dimensions.
Polycubic spline for smoothly interpolating a function in n dimensions.
Cubic spline for all your evil desires.
Bicubic spline for all your hearts desires.
read the header file!
A 2D histogram based upon a map structure.
A 1D histogram based upon a map structure.
Boost headers.
Utility headers.
Core headers Utility headers C++ headers
Numeric headers Utility headers C++ headers
C++ headers
Very simple class for histograms based upon maps. You provide the key, which is templated, meaning that the key can be a string, real, size, enum. It will return a count, if you want it
Very simple class for histograms based upon maps. You provide the key, which is templated, meaning that the two keys can be strings, reals, sizes. It will return a count, if you want it
This is an implementation of an algorithm from Numerical Recipes. It relies heavily on the implementation of the cubic spline (from Numerical Recipes), the MathMatrix, and the MathVector. You MUST USE the MathVector and MathMatrix implementations to use this function. The spline is very customizable and allows you to define the border behaviors (start/end of spline values). If you use the e_Natural (enum) BorderFlag, the start/end (border) of the spline will be linear. This may not be ideal for scoring functions as you want the a smoothing effect at the start/end (border) values. Instead, you probably want to use the e_FirstDeriv (enum) BorderFlag with the first derivate (private member value firstbe_) set to 0. This will cause a smoothing out of the start/end (border) of spline. If you want the splie to be continuous, you should use the e_Periodic (enum) BorderFlag.
To "train" the spline, use must provide the spline with a MathMatrix (numeric::MathMatrix). Lets look at an example. x values y 1__2__ 3 .1 | 1 2 3 | v .3 | 4 5 6 | a .5 | 7 8 9 | l |__________| u e s
Given the above Matrix (MathMatrix) You would want your start (START[2] private member value start_) values to be START[] = {1,.1}. You would then want to assign the delta (DELTA[2], private member value delta_) values to DELTA[] = {1,.2}. These delta values is the change between your x values and your y values. For example, the change between x1 and x2 is 1. Therefore, the delta for the x-values will be 1. For y values, you have y.1, y.3 which is a change of .2, therefore the delta will be .2. You do not have to specify an end because the algorithm will stop when it reaches the last value in the matrix.
Finally, the LinCont determins that if the argument x or y is outside the range decide if the spline should be continued linearly.
The below comments are for the Bicubic spline but apply for the cubic spline. This is an implementation of an algorithm from Numerical Recipes. It relies heavily on the implementation of the cubic spline (from Numerical Recipes), the MathMatrix, and the MathVector. You MUST USE the MathVector and MathMatrix implementations to use this function. The spline is very customizable and allows you to define the border behaviors (start/end of spline values). If you use the e_Natural (enum) BorderFlag, the start/end (border) of the spline will be linear. This may not be ideal for scoring functions as you want the a smoothing effect at the start/end (border) values. Instead, you probably want to use the e_FirstDeriv (enum) BorderFlag with the first derivate (private member value firstbe_) set to 0. This will cause a smoothing out of the start/end (border) of spline. If you want the splie to be continuous, you should use the e_Periodic (enum) BorderFlag.
To "train" the spline, use must provide the spline with a MathMatrix (numeric::MathMatrix). Lets look at an example. x values y 1__2__ 3 .1 | 1 2 3 | v .3 | 4 5 6 | a .5 | 7 8 9 | l |__________| u e s
Given the above Matrix (MathMatrix) You would want your start (START[2] private member value start_) values to be START[] = {1,.1}. You would then want to assign the delta (DELTA[2], private member value delta_) values to DELTA[] = {1,.2}. These delta values is the change between your x values and your y values. For example, the change between x1 and x2 is 1. Therefore, the delta for the x-values will be 1. For y values, you have y.1, y.3 which is a change of .2, therefore the delta will be .2. You do not have to specify an end because the algorithm will stop when it reaches the last value in the matrix.
Finally, the LinCont determins that if the argument x or y is outside the range decide if the spline should be continued linearly.
This is an implementation of an algorithm that was taken from BCL (Jens Meiler) The Matrix is constructed out of arrays and places values into rows/columns based on however many columns/rows you specify. Actual operations of the MathMatrix are implemented in numeric/MathMatrix_operations.hh. To access specific values (elements), you must use the operator (). For example: to access row 5, column 3 of a matrix, you would use matrix(5,3). *****NOTE**** The MathMatrix class is indexed at 0!!!!
This is an implementation of an algorithm that was taken from BCL (Jens Meiler) The Matrix is construction is found in numeric/MathMatrix.hh. These are mathematical functions that can be used by the MathMatrix class. ***Note that these are outside of class, but having the operators take two arguments ensures that no one will use the functions unknowningly
This is an implementation of an algorithm that was taken from BCL (Jens Meiler) *****NOTE**** The MathTensor class is indexed at 0!!!!
This is an implementation of an algorithm that was taken from BCL (Jens Meiler) *****NOTE**** The MathTensor class is indexed at 0!!!!
This is an implementation of an algorithm that was taken from BCL (Jens Meiler) The MathVector is constructed just like utility::vector0, however this class does not inherit from utility::vector0. It is implemented this way to avoid confusion. Most functions from the std::vector / utility::vector0 ARE NOT included. This is a vector that performs mathematical functions, not a "storage" vector. Actual mathematical functions found in numeric/MathVector_operations. To access specific values you must use the operator (). For example: vector(5), will give you the value at index 5. This is done to distinguish from utility::vector!
This is an implementation of an algorithm that was taken from BCL (Jens Meiler) The Matrix is construction is found in numeric/MathVector.hh. These are mathematical functions that can be used by the MathVector class. ***Note that these are outside of class, but having the operators take two arguments ensures that no one will use the functions unknowningly
Currently supported RG types: standard - build in C++ random generator ran3 - old generator from previos version of rosetta
Definition at line 28 of file BodyPosition.fwd.hh.
Definition at line 23 of file BodyPosition.fwd.hh.
Definition at line 29 of file BodyPosition.fwd.hh.
typedef utility::pointer::shared_ptr<Calculator> numeric::CalculatorOP |
Definition at line 22 of file Calculator.fwd.hh.
typedef utility::pointer::weak_ptr<ClusteringTreeNode> numeric::ClusteringTreeNodeAP |
Definition at line 25 of file ClusteringTreeNode.fwd.hh.
typedef utility::pointer::shared_ptr<ClusteringTreeNode> numeric::ClusteringTreeNodeOP |
Definition at line 22 of file ClusteringTreeNode.fwd.hh.
Definition at line 23 of file cyclic_coordinate_descent.cc.
typedef utility::pointer::shared_ptr< Polynomial_1d const > numeric::Polynomial_1dCOP |
Definition at line 25 of file polynomial.fwd.hh.
typedef utility::pointer::shared_ptr< Polynomial_1d > numeric::Polynomial_1dOP |
Definition at line 22 of file polynomial.fwd.hh.
Definition at line 28 of file Quaternion.fwd.hh.
Definition at line 23 of file Quaternion.fwd.hh.
Definition at line 29 of file Quaternion.fwd.hh.
typedef utility::pointer::shared_ptr<RocCurve> numeric::RocCurveOP |
Definition at line 32 of file roc_curve.fwd.hh.
typedef utility::pointer::shared_ptr<RocPoint> numeric::RocPointOP |
Definition at line 29 of file roc_curve.fwd.hh.
typedef utility::pointer::shared_ptr< UniformRotationSampler const > numeric::UniformRotationSamplerCOP |
Definition at line 26 of file UniformRotationSampler.fwd.hh.
typedef utility::pointer::shared_ptr< UniformRotationSampler > numeric::UniformRotationSamplerOP |
Definition at line 24 of file UniformRotationSampler.fwd.hh.
Definition at line 22 of file cyclic_coordinate_descent.cc.
Definition at line 34 of file xyzTransform.fwd.hh.
Definition at line 29 of file xyzTransform.fwd.hh.
Definition at line 29 of file xyzMatrix.fwd.hh.
typedef xyzMatrix< char > numeric::xyzMatrix_char |
Definition at line 46 of file xyzMatrix.fwd.hh.
Definition at line 44 of file xyzMatrix.fwd.hh.
Definition at line 43 of file xyzMatrix.fwd.hh.
Definition at line 35 of file xyzMatrix.fwd.hh.
typedef xyzMatrix< long int > numeric::xyzMatrix_long |
Definition at line 36 of file xyzMatrix.fwd.hh.
Definition at line 45 of file xyzMatrix.fwd.hh.
typedef xyzMatrix< signed char > numeric::xyzMatrix_schar |
Definition at line 48 of file xyzMatrix.fwd.hh.
typedef xyzMatrix< short int > numeric::xyzMatrix_short |
Definition at line 34 of file xyzMatrix.fwd.hh.
Definition at line 40 of file xyzMatrix.fwd.hh.
Definition at line 42 of file xyzMatrix.fwd.hh.
Definition at line 41 of file xyzMatrix.fwd.hh.
typedef xyzMatrix< unsigned char > numeric::xyzMatrix_uchar |
Definition at line 47 of file xyzMatrix.fwd.hh.
typedef xyzMatrix< unsigned int > numeric::xyzMatrix_uint |
Definition at line 38 of file xyzMatrix.fwd.hh.
typedef xyzMatrix< unsigned long int > numeric::xyzMatrix_ulong |
Definition at line 39 of file xyzMatrix.fwd.hh.
typedef xyzMatrix< unsigned short int > numeric::xyzMatrix_ushort |
Definition at line 37 of file xyzMatrix.fwd.hh.
Definition at line 38 of file xyzTransform.fwd.hh.
Definition at line 37 of file xyzTransform.fwd.hh.
Definition at line 36 of file xyzTransform.fwd.hh.
Definition at line 28 of file xyzTriple.fwd.hh.
typedef xyzTriple< char > numeric::xyzTriple_char |
Definition at line 44 of file xyzTriple.fwd.hh.
Definition at line 42 of file xyzTriple.fwd.hh.
Definition at line 41 of file xyzTriple.fwd.hh.
Definition at line 34 of file xyzTriple.fwd.hh.
typedef xyzTriple< long int > numeric::xyzTriple_long |
Definition at line 35 of file xyzTriple.fwd.hh.
Definition at line 43 of file xyzTriple.fwd.hh.
typedef xyzTriple< signed char > numeric::xyzTriple_schar |
Definition at line 46 of file xyzTriple.fwd.hh.
typedef xyzTriple< short int > numeric::xyzTriple_short |
Definition at line 33 of file xyzTriple.fwd.hh.
typedef xyzTriple< std::size_t > numeric::xyzTriple_size |
Definition at line 40 of file xyzTriple.fwd.hh.
typedef xyzTriple< std::size_t > numeric::xyzTriple_size_t |
Definition at line 39 of file xyzTriple.fwd.hh.
typedef xyzTriple< unsigned char > numeric::xyzTriple_uchar |
Definition at line 45 of file xyzTriple.fwd.hh.
typedef xyzTriple< unsigned int > numeric::xyzTriple_uint |
Definition at line 37 of file xyzTriple.fwd.hh.
typedef xyzTriple< unsigned long int > numeric::xyzTriple_ulong |
Definition at line 38 of file xyzTriple.fwd.hh.
typedef xyzTriple< unsigned short int > numeric::xyzTriple_ushort |
Definition at line 36 of file xyzTriple.fwd.hh.
Definition at line 28 of file xyzVector.fwd.hh.
typedef xyzVector< char > numeric::xyzVector_char |
Definition at line 44 of file xyzVector.fwd.hh.
Definition at line 42 of file xyzVector.fwd.hh.
Definition at line 41 of file xyzVector.fwd.hh.
Definition at line 34 of file xyzVector.fwd.hh.
typedef xyzVector< long int > numeric::xyzVector_long |
Definition at line 35 of file xyzVector.fwd.hh.
Definition at line 43 of file xyzVector.fwd.hh.
typedef xyzVector< signed char > numeric::xyzVector_schar |
Definition at line 46 of file xyzVector.fwd.hh.
typedef xyzVector< short int > numeric::xyzVector_short |
Definition at line 33 of file xyzVector.fwd.hh.
typedef xyzVector< std::size_t > numeric::xyzVector_size |
Definition at line 40 of file xyzVector.fwd.hh.
typedef xyzVector< std::size_t > numeric::xyzVector_size_t |
Definition at line 39 of file xyzVector.fwd.hh.
typedef xyzVector< unsigned char > numeric::xyzVector_uchar |
Definition at line 45 of file xyzVector.fwd.hh.
typedef xyzVector< unsigned int > numeric::xyzVector_uint |
Definition at line 37 of file xyzVector.fwd.hh.
typedef xyzVector< unsigned long int > numeric::xyzVector_ulong |
Definition at line 38 of file xyzVector.fwd.hh.
typedef xyzVector< unsigned short int > numeric::xyzVector_ushort |
Definition at line 36 of file xyzVector.fwd.hh.
enum numeric::RocStatus |
Enumerator | |
---|---|
true_positive | |
true_negative | |
false_positive | |
false_negative |
Definition at line 21 of file roc_curve.fwd.hh.
|
inline |
Absolute difference.
Definition at line 344 of file numeric.functions.hh.
void numeric::add | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b, | ||
xyzTriple< T > & | r | ||
) |
void numeric::add | ( | xyzTriple< T > const & | v, |
T const & | t, | ||
xyzTriple< T > & | r | ||
) |
Add: xyzTriple + T.
void numeric::add | ( | T const & | t, |
xyzTriple< T > const & | v, | ||
xyzTriple< T > & | r | ||
) |
Add: T + xyzTriple.
void numeric::add | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b, | ||
xyzVector< T > & | r | ||
) |
void numeric::add | ( | xyzVector< T > const & | v, |
T const & | t, | ||
xyzVector< T > & | r | ||
) |
Add: xyzVector + T.
void numeric::add | ( | T const & | t, |
xyzVector< T > const & | v, | ||
xyzVector< T > & | r | ||
) |
Add: T + xyzVector.
|
inline |
Helper function to find the rotation to optimally transform the vectors A1-B1 to vectors A2-B2.
Definition at line 727 of file xyz.functions.hh.
References inverse(), numeric::xyzVector< typename >::normalize(), test.T007_TracerIO::T, numeric::xyzMatrix< typename >::xx(), numeric::xyzMatrix< typename >::xy(), numeric::xyzMatrix< typename >::xz(), numeric::xyzMatrix< typename >::yx(), numeric::xyzMatrix< typename >::yy(), numeric::xyzMatrix< typename >::yz(), numeric::xyzMatrix< typename >::zx(), numeric::xyzMatrix< typename >::zy(), and numeric::xyzMatrix< typename >::zz().
|
inline |
Plane angle in degrees: angle value returned.
Definition at line 273 of file xyz.functions.hh.
References Equations::angle(), angle_radians(), numeric::conversions::degrees(), and test.T007_TracerIO::T.
Referenced by angle_degrees_double().
|
inline |
Angle between two vectors in radians.
Definition at line 327 of file xyz.functions.hh.
References Equations::angle(), angle_radians(), numeric::conversions::degrees(), and test.T007_TracerIO::T.
|
inline |
Definition at line 285 of file xyz.functions.hh.
References angle_degrees().
|
inline |
Definition at line 339 of file xyz.functions.hh.
References angle_degrees().
T numeric::angle_of | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b | ||
) |
Angle between two vectors (in radians on [ 0, pi ])
Referenced by zinc2_homodimer_setup::filter_metal_geom(), zinc1_homodimer_design::setup_rollmoving(), and apps::public1::scenarios::chemically_conjugated_docking::ubq_ras_rotation_angle().
T numeric::angle_of | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b, | ||
xyzTriple< T > const & | c | ||
) |
Angle formed by three consecutive points (in radians on [ 0, pi ])
T numeric::angle_of | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b | ||
) |
Angle between two vectors (in radians on [ 0, pi ])
T numeric::angle_of | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b, | ||
xyzVector< T > const & | c | ||
) |
Angle formed by three consecutive points (in radians on [ 0, pi ])
|
inline |
Plane angle in radians: angle value passed.
Definition at line 225 of file xyz.functions.hh.
References test.T850_SubClassing::a, test.T850_SubClassing::b, dot(), and sin_cos_range().
Referenced by add_bond_angle_constraint(), angle_degrees(), angle_radians(), and angle_radians_double().
|
inline |
Plane angle in radians: angle value returned.
Definition at line 248 of file xyz.functions.hh.
References Equations::angle(), angle_radians(), and test.T007_TracerIO::T.
|
inline |
Angle between two vectors in radians.
Definition at line 298 of file xyz.functions.hh.
References test.T850_SubClassing::a, Equations::angle(), test.T850_SubClassing::b, dot(), sin_cos_range(), and test.T007_TracerIO::T.
|
inline |
Definition at line 260 of file xyz.functions.hh.
References angle_radians().
|
inline |
Definition at line 313 of file xyz.functions.hh.
References angle_radians().
|
inline |
like std::acos but with range checking
Definition at line 133 of file trig.functions.hh.
References sin_cos_range().
Referenced by numeric::deriv::angle_p1_deriv(), numeric::deriv::angle_p1_p2_p3_deriv(), numeric::deriv::angle_p2_deriv(), and numeric::deriv::dihedral_deriv_second().
|
inline |
void numeric::ccd_angle | ( | utility::vector1< xyzVector< Real > > const & | F, |
utility::vector1< xyzVector< Real > > const & | M, | ||
xyzVector< Real > const & | axis_atom, | ||
xyzVector< Real > const & | theta_hat, | ||
Real & | alpha, | ||
Real & | S | ||
) |
<F> | the coordinates of the fixed target atoms |
<M> | the coordinates of the moving positions to be overlapped with the target atoms |
<theta_hat> | axis vector of the torsion angle |
<alpha> | empty angle to be calculated |
<S> | empty deviation to be calculated |
The objective of an individual cyclic coordinate descent (CCD) move is to minimize the deviation between a set of points that should perfectly superimpose. The deviation squared (S) can be expressed as:
S = Sum(r^2 + f^2) - 2 Sum[r(f_vector dot r_hat)] cos theta - 2 Sum[r(f_vector dot s_hat)] sin theta
The derivative of S with respect to theta (the angle about the rotation axis):
dS/dtheta = 2 Sum[r(f_vector dot r_hat)] sin theta - 2 Sum[r(f_vector dot s_hat)] cos theta
Setting dS/dtheta to zero gives the minimal value of theta, which we call alpha:
tan alpha = Sum[r(f_vector dot s_hat] / Sum[r(f_vector dot r_hat]
If we define... a = Sum(r^2 + f^2) b = 2 Sum[r(f_vector dot r_hat)] c = 2 Sum[r(f_vector dot s_hat)] then S can be rewritten: S = a - b cos alpha - c sin alpha and we can express alpha as tan alpha = c / b
Definition at line 53 of file cyclic_coordinate_descent.cc.
References ObjexxFCL::abs(), cross(), numeric::conversions::degrees(), dot(), ObjexxFCL::format::F(), numeric::xyzVector< typename >::is_unit(), numeric::xyzVector< typename >::length(), test.T007_TracerIO::M, min(), and numeric::xyzVector< typename >::normalized().
xyzTriple< T > numeric::center | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b | ||
) |
Center of 2 xyzTriples.
Referenced by app.pyrosetta_toolkit.modules.prettytable.prettytable.PrettyTable::_stringify_header(), app.pyrosetta_toolkit.modules.prettytable.prettytable.PrettyTable::_stringify_row(), numeric::geometry::hashing::SixDCoordinateBinner::bin_center_point(), and numeric::alignment::QCP_Kernel< double >::remove_center_of_mass().
void numeric::center | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b, | ||
xyzTriple< T > & | m | ||
) |
Center of 2 xyzTriples: Return via argument (slightly faster)
xyzTriple< T > numeric::center | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b, | ||
xyzTriple< T > const & | c | ||
) |
Center of 3 xyzTriples.
void numeric::center | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b, | ||
xyzTriple< T > const & | c, | ||
xyzTriple< T > & | m | ||
) |
Center of 3 xyzTriples: Return via argument (slightly faster)
xyzTriple< T > numeric::center | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b, | ||
xyzTriple< T > const & | c, | ||
xyzTriple< T > const & | d | ||
) |
Center of 4 xyzTriples.
void numeric::center | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b, | ||
xyzTriple< T > const & | c, | ||
xyzTriple< T > const & | d, | ||
xyzTriple< T > & | m | ||
) |
Center of 4 xyzTriples: Return via argument (slightly faster)
xyzVector< T > numeric::center | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b | ||
) |
Center of 2 xyzVectors.
void numeric::center | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b, | ||
xyzVector< T > & | m | ||
) |
Center of 2 xyzVectors: Return via argument (slightly faster)
xyzVector< T > numeric::center | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b, | ||
xyzVector< T > const & | c | ||
) |
Center of 3 xyzVectors.
void numeric::center | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b, | ||
xyzVector< T > const & | c, | ||
xyzVector< T > & | m | ||
) |
Center of 3 xyzVectors: Return via argument (slightly faster)
xyzVector< T > numeric::center | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b, | ||
xyzVector< T > const & | c, | ||
xyzVector< T > const & | d | ||
) |
Center of 4 xyzVectors.
void numeric::center | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b, | ||
xyzVector< T > const & | c, | ||
xyzVector< T > const & | d, | ||
xyzVector< T > & | m | ||
) |
Center of 4 xyzVectors: Return via argument (slightly faster)
|
inline |
calculate center of mass for coordinates
Definition at line 79 of file xyz.functions.hh.
Referenced by numeric::geometry::residual_squared_of_points_to_plane(), and numeric::geometry::vector_normal_to_ring_plane_of_best_fit().
Number numeric::clamp | ( | Number | value, |
Number | lower_bound, | ||
Number | upper_bound | ||
) |
|
inline |
Definition at line 66 of file xyz.functions.hh.
References dot_product(), and numeric::xyzVector< typename >::magnitude_squared().
|
inline |
convert a string of comma separated values "0.2,0.4,0.3" to an xyzVector
Definition at line 1103 of file xyz.functions.hh.
References utility::from_string(), runtime_assert, utility::string_split(), test.T007_TracerIO::T, and numeric::crick_equations::xyz().
T numeric::cos_of | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b | ||
) |
Cosine of angle between two vectors.
T numeric::cos_of | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b, | ||
xyzTriple< T > const & | c | ||
) |
Cosine of angle formed by three consecutive points.
T numeric::cos_of | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b | ||
) |
Cosine of angle between two vectors.
T numeric::cos_of | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b, | ||
xyzVector< T > const & | c | ||
) |
Cosine of angle formed by three consecutive points.
|
inline |
xyzTriple< T > numeric::cross | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b | ||
) |
Cross product.
Referenced by numeric::deriv::angle_p2_deriv(), ccd_angle(), numeric::deriv::dihedral_p1_cosine_deriv_first(), numeric::deriv::dihedral_p2_cosine_deriv_first(), dihedral_radians(), numeric::xyzTransform< numeric::Real >::from_four_points(), numeric::deriv::helper(), and numeric::deriv::p1_theta_deriv().
void numeric::cross | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b, | ||
xyzTriple< T > & | c | ||
) |
Cross product: Return via argument (slightly faster)
xyzVector< T > numeric::cross | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b | ||
) |
Cross product.
void numeric::cross | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b, | ||
xyzVector< T > & | c | ||
) |
Cross product: Return via argument (slightly faster)
xyzTriple< T > numeric::cross_product | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b | ||
) |
Cross product.
Referenced by zinc2_homodimer_setup::rollmove_to_inverse_C2_symmetry(), and zinc1_homodimer_design::setup_rollmoving().
void numeric::cross_product | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b, | ||
xyzTriple< T > & | c | ||
) |
Cross product: Return via argument (slightly faster)
xyzVector< T > numeric::cross_product | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b | ||
) |
Cross product.
void numeric::cross_product | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b, | ||
xyzVector< T > & | c | ||
) |
Cross product: Return via argument (slightly faster)
|
inline |
Cosecant.
Definition at line 54 of file trig.functions.hh.
References test.T007_TracerIO::T.
Referenced by numeric::BodyPosition< typename >::BodyPosition().
|
inline |
void numeric::cumulative | ( | RandomAccessIterator | first, |
RandomAccessIterator | last | ||
) |
|
inline |
Definition at line 40 of file xyz.json.hh.
References numeric::xyzVector< typename >::x(), numeric::xyzVector< typename >::y(), and numeric::xyzVector< typename >::z().
|
inline |
Dihedral (torsion) angle in degrees: angle value passed.
Definition at line 486 of file xyz.functions.hh.
References dihedral_radians(), and numeric::conversions::to_degrees().
Referenced by dihedral_double().
|
inline |
Dihedral (torsion) angle in degrees: angle value returned.
Definition at line 513 of file xyz.functions.hh.
References numeric::conversions::degrees(), and dihedral_radians().
|
inline |
Dihedral (torsion) angle in degrees: angle value passed.
Definition at line 435 of file xyz.functions.hh.
References dihedral_radians(), and numeric::conversions::to_degrees().
Referenced by dihedral_degrees_double(), and apps::public1::scenarios::chemically_conjugated_docking::ubq_ras_rotation_angle().
|
inline |
Dihedral (torsion) angle in degrees: angle value returned.
Definition at line 461 of file xyz.functions.hh.
References numeric::conversions::degrees(), and dihedral_radians().
|
inline |
Definition at line 448 of file xyz.functions.hh.
References dihedral_degrees().
|
inline |
Definition at line 473 of file xyz.functions.hh.
References dihedral_degrees().
|
inline |
Definition at line 499 of file xyz.functions.hh.
References dihedral().
|
inline |
Definition at line 525 of file xyz.functions.hh.
References dihedral().
|
inline |
Dihedral (torsion) angle in radians: angle value passed.
Definition at line 358 of file xyz.functions.hh.
References test.T850_SubClassing::a, test.T850_SubClassing::b, cross(), dot(), test.T007_TracerIO::T, x(), and y().
Referenced by dihedral(), dihedral_degrees(), numeric::deriv::dihedral_deriv_second(), dihedral_radians(), dihedral_radians_double(), and minimize_test().
|
inline |
Dihedral (torsion) angle in radians: angle value returned.
Definition at line 410 of file xyz.functions.hh.
References Equations::angle(), dihedral_radians(), and test.T007_TracerIO::T.
|
inline |
Definition at line 389 of file xyz.functions.hh.
References dihedral_radians().
|
inline |
Definition at line 423 of file xyz.functions.hh.
References dihedral_radians().
|
inline |
Definition at line 47 of file MathVector_operations.hh.
References numeric::kinematic_closure::norm().
Referenced by numeric::deriv::distance_f1_f2_deriv(), utility::vector1< bool, A >::index(), utility::vector1< numeric::urs_Quat >::index(), utility::graph::RingDetection< Graph >::LengthOfSmallestCycleWithVertex(), main(), FragmentAssemblyMover::run(), utility::keys::ClassKeyVector< K, T, C >::sort(), utility::graph::RingSizeVisitor< Graph, DistanceMap, LabelMap >::tree_edge(), and apps::public1::scenarios::chemically_conjugated_docking::ubq_ras_distance().
T numeric::distance | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b | ||
) |
Distance.
T numeric::distance_squared | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b | ||
) |
Distance squared.
Referenced by HDmakerMover::bb_score(), ExposedStrandMover::bb_score(), and src::etable_atom_pair_energies().
void numeric::divide | ( | xyzTriple< T > const & | v, |
T const & | t, | ||
xyzTriple< T > & | r | ||
) |
Divide: xyzTriple / T.
void numeric::divide | ( | xyzVector< T > const & | v, |
T const & | t, | ||
xyzVector< T > & | r | ||
) |
Divide: xyzVector / T.
Definition at line 41 of file Calculator.cc.
References ObjexxFCL::abs().
Referenced by numeric::CalculatorParser::CalculatorParser().
void numeric::do_add_symbol | ( | CalculatorParser & | cp, |
std::string | name, | ||
double | value | ||
) |
Definition at line 148 of file Calculator.cc.
References numeric::CalculatorParser::add_symbol().
Referenced by numeric::CalculatorParser::CalculatorParser().
Definition at line 50 of file Calculator.cc.
Referenced by numeric::CalculatorParser::CalculatorParser().
Definition at line 43 of file Calculator.cc.
Referenced by numeric::CalculatorParser::CalculatorParser().
Definition at line 44 of file Calculator.cc.
References log().
Referenced by numeric::CalculatorParser::CalculatorParser().
Definition at line 47 of file Calculator.cc.
References log().
Referenced by numeric::CalculatorParser::CalculatorParser().
Definition at line 45 of file Calculator.cc.
Referenced by numeric::CalculatorParser::CalculatorParser().
Definition at line 46 of file Calculator.cc.
References log().
Referenced by numeric::CalculatorParser::CalculatorParser().
Definition at line 52 of file Calculator.cc.
References max().
Referenced by numeric::CalculatorParser::CalculatorParser().
Definition at line 54 of file Calculator.cc.
References mean().
Referenced by numeric::CalculatorParser::CalculatorParser().
Definition at line 55 of file Calculator.cc.
References median().
Referenced by numeric::CalculatorParser::CalculatorParser().
Definition at line 53 of file Calculator.cc.
References min().
Referenced by numeric::CalculatorParser::CalculatorParser().
Definition at line 42 of file Calculator.cc.
References ObjexxFCL::pow().
Referenced by numeric::CalculatorParser::CalculatorParser().
Definition at line 49 of file Calculator.cc.
Referenced by numeric::CalculatorParser::CalculatorParser().
Definition at line 48 of file Calculator.cc.
Referenced by numeric::CalculatorParser::CalculatorParser().
Definition at line 51 of file Calculator.cc.
Referenced by numeric::CalculatorParser::CalculatorParser().
T numeric::dot | ( | Quaternion< T > const & | q1, |
Quaternion< T > const & | q2 | ||
) |
Dot product.
Referenced by numeric::deriv::angle_p1_deriv(), numeric::deriv::angle_p1_p2_p3_deriv(), numeric::deriv::angle_p2_deriv(), angle_radians(), ccd_angle(), numeric::deriv::dihedral_p1_cosine_deriv_first(), numeric::deriv::dihedral_p2_cosine_deriv_first(), dihedral_radians(), numeric::xyzTransform< numeric::Real >::intersect3D_2Planes(), numeric::deriv::p1_theta_deriv(), and numeric::deriv::x_and_dtheta_dx().
T numeric::dot | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b | ||
) |
Dot product.
T numeric::dot | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b | ||
) |
Distance.
Distance squared Dot product
T numeric::dot_product | ( | Quaternion< T > const & | q1, |
Quaternion< T > const & | q2 | ||
) |
Dot product.
Referenced by closest_point_on_line().
T numeric::dot_product | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b | ||
) |
Dot product.
T numeric::dot_product | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b | ||
) |
Dot product.
|
inline |
Classic Jacobi algorithm for the eigenvalues of a real symmetric matrix.
Definition at line 918 of file xyz.functions.hh.
References ObjexxFCL::abs(), jacobi_rotation(), numeric::xyzMatrix< typename >::left_multiply_by_transpose(), numeric::xyzMatrix< typename >::right_multiply_by(), test.T007_TracerIO::T, numeric::xyzMatrix< typename >::xx_, numeric::xyzMatrix< typename >::xy_, numeric::xyzMatrix< typename >::xz_, numeric::xyzMatrix< typename >::yx_, numeric::xyzMatrix< typename >::yy_, numeric::xyzMatrix< typename >::yz_, numeric::xyzMatrix< typename >::zx_, numeric::xyzMatrix< typename >::zy_, and numeric::xyzMatrix< typename >::zz_.
Referenced by instantiate_numeric_functions().
|
inline |
Classic Jacobi algorithm for the eigenvalues and eigenvectors of a real symmetric matrix.
Definition at line 982 of file xyz.functions.hh.
References ObjexxFCL::abs(), jacobi_rotation(), numeric::xyzMatrix< typename >::left_multiply_by_transpose(), numeric::xyzMatrix< typename >::right_multiply_by(), test.T007_TracerIO::T, numeric::xyzMatrix< typename >::to_identity(), numeric::xyzMatrix< typename >::xx_, numeric::xyzMatrix< typename >::xy_, numeric::xyzMatrix< typename >::xz_, numeric::xyzMatrix< typename >::yx_, numeric::xyzMatrix< typename >::yy_, numeric::xyzMatrix< typename >::yz_, numeric::xyzMatrix< typename >::zx_, numeric::xyzMatrix< typename >::zy_, and numeric::xyzMatrix< typename >::zz_.
Referenced by numeric::model_quality::findUU(), instantiate_numeric_functions(), and principal_components_and_eigenvalues().
|
inline |
Equal within specified relative and absolute tolerances?
Definition at line 651 of file numeric.functions.hh.
References ObjexxFCL::abs(), max(), min(), and test.T007_TracerIO::T.
Referenced by numeric::interpolation::bilinearly_interpolated(), and numeric::interpolation::Histogram< typename, typename >::set_params().
|
inline |
bool numeric::equal_length | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b | ||
) |
Equal length?
bool numeric::equal_length | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b | ||
) |
Equal length?
void numeric::expand_xforms | ( | OutputIterator | container, |
xyzTransform< T > const & | G1, | ||
xyzTransform< T > const & | G2, | ||
xyzTransform< T > const & | , | ||
int | N = 5 , |
||
Real | r = 9e9 , |
||
xyzVector< T > const & | test_point = xyzVector<T>(Real(1.0),Real(3.0),Real(10.0)) |
||
) |
Definition at line 525 of file xyzTransform.hh.
References ObjexxFCL::format::I(), app.pyrosetta_toolkit.window_modules.options_system.OptionSystemManager::test, and x().
Referenced by expand_xforms().
void numeric::expand_xforms | ( | OutputIterator | container, |
xyzTransform< T > const & | G1, | ||
xyzTransform< T > const & | G2, | ||
int | N = 5 , |
||
Real | r = 9e9 , |
||
xyzVector< T > const & | test_point = xyzVector<T>(Real(1.0),Real(3.0),Real(10.0)) |
||
) |
Definition at line 614 of file xyzTransform.hh.
References expand_xforms().
|
inline |
convert an FArray2D to a vector of xyzVectors
Definition at line 1135 of file xyz.functions.hh.
References ObjexxFCL::index(), app.surface_docking.surface_docking::input, contacts::output, ObjexxFCL::FArray2< T >::size1(), ObjexxFCL::FArray2D< typename >::size2(), x(), y(), and z().
Referenced by numeric::model_quality::findUU().
|
inline |
convert a 3x3 FArray 2D to an xyzMatrix
Definition at line 1152 of file xyz.functions.hh.
References app.surface_docking.surface_docking::input, numeric::xyzMatrix< typename >::rows(), ObjexxFCL::FArray2< T >::size1(), and ObjexxFCL::FArray2D< typename >::size2().
Referenced by numeric::model_quality::findUU().
|
inline |
Remainder of x with respect to division by y that is of smallest magnitude.
Definition at line 613 of file numeric.functions.hh.
T numeric::find_nearest_value | ( | typename utility::vector1< T > const & | input_list, |
T | key, | ||
platform::Size | min_index, | ||
platform::Size | max_index | ||
) |
recursive binary search that finds the value closest to key. Call find_nearest_value(input_list,value) instead. It's the driver function for this function. This fails miserably (and silently!) on a non-sorted vector, so don't do that!.
Definition at line 121 of file util.hh.
References ObjexxFCL::abs(), key, and test.T007_TracerIO::T.
T numeric::find_nearest_value | ( | typename utility::vector1< T > const & | input_list, |
T | key | ||
) |
|
inline |
return the first principal component of the given set of points
Definition at line 40 of file PCA.hh.
References numeric::xyzMatrix< typename >::col(), and principal_components().
|
inline |
Greatest common divisor.
Definition at line 634 of file numeric.functions.hh.
References max(), min(), mod(), and test.T007_TracerIO::T.
|
inline |
Greater than or equal within specified relative and absolute tolerances?
Definition at line 690 of file numeric.functions.hh.
References ObjexxFCL::abs(), max(), min(), and test.T007_TracerIO::T.
void numeric::get_cluster_data | ( | utility::vector1< T > & | data_in, |
ClusteringTreeNodeOP | cluster, | ||
utility::vector1< T > & | data_out | ||
) |
Definition at line 48 of file agglomerative_hierarchical_clustering.hh.
|
inline |
Greater than within specified relative and absolute tolerances?
Definition at line 703 of file numeric.functions.hh.
References ObjexxFCL::abs(), max(), min(), and test.T007_TracerIO::T.
platform::Size numeric::hash_value | ( | xyzVector< T > const & | v | ) |
Definition at line 2072 of file xyzVector.hh.
References numeric::xyzVector< typename >::x_, numeric::xyzVector< typename >::y_, and numeric::xyzVector< typename >::z_.
numeric::xyzVector< platform::Real > numeric::hsv_to_rgb | ( | platform::Real | h, |
platform::Real | s, | ||
platform::Real | v | ||
) |
convert an HSV color to RGB
Definition at line 79 of file color_util.cc.
numeric::xyzVector< platform::Real > numeric::hsv_to_rgb | ( | numeric::xyzVector< platform::Real > | hsv_triplet | ) |
convert an HSV color to RGB
Definition at line 86 of file color_util.cc.
References demo.D060_Folding::f, docking::p, value, numeric::xyzVector< typename >::x(), numeric::xyzVector< typename >::y(), and numeric::xyzVector< typename >::z().
|
inline |
Is a sine or cosine value within a specified tolerance of the valid [-1,1] range?
Definition at line 74 of file trig.functions.hh.
References test.T007_TracerIO::T, and loops_kic::tol.
T numeric::inner_product | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b | ||
) |
Inner product ( == dot product )
Referenced by numeric::MathVector< Real >::square_norm().
T numeric::inner_product | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b | ||
) |
Inner product ( == dot product )
|
inline |
xyzMatrix * xyzVector in-place product
Definition at line 111 of file xyz.functions.hh.
References test.T007_TracerIO::T, test.T850_SubClassing::v, x(), numeric::xyzVector< typename >::x_, numeric::xyzMatrix< typename >::xx_, numeric::xyzMatrix< typename >::xy_, numeric::xyzMatrix< typename >::xz_, y(), numeric::xyzVector< typename >::y_, numeric::xyzMatrix< typename >::yx_, numeric::xyzMatrix< typename >::yy_, numeric::xyzMatrix< typename >::yz_, numeric::xyzVector< typename >::z_, numeric::xyzMatrix< typename >::zx_, numeric::xyzMatrix< typename >::zy_, and numeric::xyzMatrix< typename >::zz_.
Referenced by instantiate_numeric_functions(), numeric::BodyPosition< typename >::invert(), numeric::BodyPosition< typename >::operator()(), and numeric::BodyPosition< typename >::transform().
|
inline |
xyzMatrix^T * xyzVector in-place transpose product
Definition at line 141 of file xyz.functions.hh.
References test.T007_TracerIO::T, test.T850_SubClassing::v, x(), numeric::xyzVector< typename >::x_, numeric::xyzMatrix< typename >::xx_, numeric::xyzMatrix< typename >::xy_, numeric::xyzMatrix< typename >::xz_, y(), numeric::xyzVector< typename >::y_, numeric::xyzMatrix< typename >::yx_, numeric::xyzMatrix< typename >::yy_, numeric::xyzMatrix< typename >::yz_, numeric::xyzVector< typename >::z_, numeric::xyzMatrix< typename >::zx_, numeric::xyzMatrix< typename >::zy_, and numeric::xyzMatrix< typename >::zz_.
Referenced by instantiate_numeric_functions(), and numeric::BodyPosition< typename >::inverse_transform().
|
inline |
Definition at line 205 of file xyz.functions.hh.
References numeric::xyzMatrix< typename >::det(), test.T007_TracerIO::T, numeric::xyzMatrix< typename >::xx_, numeric::xyzMatrix< typename >::xy_, numeric::xyzMatrix< typename >::xz_, numeric::xyzMatrix< typename >::yx_, numeric::xyzMatrix< typename >::yy_, numeric::xyzMatrix< typename >::yz_, numeric::xyzMatrix< typename >::zx_, numeric::xyzMatrix< typename >::zy_, and numeric::xyzMatrix< typename >::zz_.
Referenced by alignVectorSets(), numeric::UniformRotationSampler::remove_redundant(), and slice_ellipsoid_envelope().
Definition at line 716 of file numeric.functions.hh.
|
inline |
Definition at line 52 of file util.hh.
Referenced by compare_times::compare_times(), utility::is_inf(), and utility::is_undefined().
|
inline |
portable check to see if a value is NaN.
Definition at line 47 of file util.hh.
References value.
Referenced by compare_times::compare_times(), utility::is_nan(), and utility::is_undefined().
|
inline |
Jacobi rotation.
Definition at line 1050 of file xyz.functions.hh.
References ObjexxFCL::abs(), app.pyrosetta_toolkit.modules.SQLPDB::s, test.T007_TracerIO::T, and numeric::xyzMatrix< typename >::to_identity().
Referenced by eigenvalue_jacobi(), eigenvector_jacobi(), and instantiate_numeric_functions().
|
inline |
Less than or equal within specified relative and absolute tolerances?
Definition at line 677 of file numeric.functions.hh.
References ObjexxFCL::abs(), max(), min(), and test.T007_TracerIO::T.
double numeric::linear_interpolate | ( | Value | start, |
Value | stop, | ||
unsigned | curr_stage, | ||
unsigned | num_stages | ||
) |
Linearly interpolates a quantity from start to stop over (num_stages + 1) stages.
Definition at line 20 of file interpolate.hh.
References test.Workshop5test::start.
Computes log(x) in the given base.
Definition at line 41 of file util.hh.
Referenced by numeric::random::WeightedReservoirSampler< T >::consider_sample(), do_ln(), do_log(), do_log2(), numeric::random::RandomGenerator::gaussian(), numeric::statistics::kl_divergence(), main(), sigmoid_train(), and numeric::statistics::w().
|
inline |
Less than within specified relative and absolute tolerances?
Definition at line 664 of file numeric.functions.hh.
References ObjexxFCL::abs(), max(), min(), and test.T007_TracerIO::T.
MathVector< T > numeric::MakeVector | ( | T const & | X | ) |
Definition at line 94 of file MathVector_operations.hh.
References ObjexxFCL::format::X().
Referenced by numeric::interpolation::spline::BicubicSpline::F(), and numeric::interpolation::spline::BicubicSpline::FdF().
|
inline |
Definition at line 101 of file MathVector_operations.hh.
References ObjexxFCL::format::X().
|
inline |
Definition at line 112 of file MathVector_operations.hh.
References ObjexxFCL::format::X().
T numeric::max | ( | utility::vector1< T > const & | values | ) |
Definition at line 82 of file util.hh.
References test.T200_Scoring::ii, max(), and test.T007_TracerIO::T.
Definition at line 175 of file numeric.functions.hh.
Referenced by abs_difference(), numeric::geometry::hashing::xyzStripeHash::clash(), numeric::geometry::hashing::xyzStripeHash::clash_amount(), numeric::geometry::hashing::xyzStripeHash::clash_check_ball(), numeric::geometry::hashing::xyzStripeHash::clash_not_resid(), numeric::geometry::hashing::xyzStripeHash::clash_raw(), numeric::CompleteLinkClusterer::comparator(), do_max(), eq_tol(), numeric::geometry::hashing::xyzStripeHash::fill_pairs(), gcd(), ge_tol(), gt_tol(), numeric::geometry::hashing::xyzStripeHash::init(), numeric::geometry::hashing::xyzStripeHashWithMeta< float >::init(), le_tol(), lt_tol(), max(), numeric::geometry::hashing::xyzStripeHash::nbcount(), numeric::geometry::hashing::xyzStripeHashWithMeta< float >::nbcount(), numeric::geometry::hashing::xyzStripeHash::nbcount_raw(), rotation_axis(), numeric::kinematic_closure::sbisect(), numeric::interpolation::Histogram< typename, typename >::set_params(), numeric::kinematic_closure::solve_sturm(), numeric::geometry::hashing::xyzStripeHash::visit(), numeric::geometry::hashing::xyzStripeHashWithMeta< float >::visit(), numeric::geometry::hashing::xyzStripeHash::visit_lax(), and numeric::geometry::hashing::xyzStripeHashWithMeta< float >::visit_lax().
Definition at line 184 of file numeric.functions.hh.
Definition at line 193 of file numeric.functions.hh.
max( unsigned short int, unsigned short int )
Definition at line 202 of file numeric.functions.hh.
max( unsigned int, unsigned int )
Definition at line 211 of file numeric.functions.hh.
max( unsigned long int, unsigned long int )
Definition at line 220 of file numeric.functions.hh.
Definition at line 229 of file numeric.functions.hh.
Definition at line 238 of file numeric.functions.hh.
max( long double, long double )
Definition at line 247 of file numeric.functions.hh.
|
inline |
max( a, b, c )
Definition at line 261 of file numeric.functions.hh.
|
inline |
|
inline |
max( a, b, c, d, e )
Definition at line 281 of file numeric.functions.hh.
|
inline |
max( a, b, c, d, e, f )
Definition at line 291 of file numeric.functions.hh.
xyzTriple< T > numeric::max | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b | ||
) |
xyzTriple with max coordinates of two xyzTriples
xyzVector< T > numeric::max | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b | ||
) |
xyzVector with max coordinates of two xyzVectors
numeric::Real numeric::mean | ( | utility::vector1< numeric::Real > const & | values | ) |
numeric::Real numeric::median | ( | utility::vector1< numeric::Real > const & | values | ) |
Returns the median from a vector1 of Real values.
Definition at line 21 of file util.cc.
Referenced by do_median().
xyzTriple< T > numeric::midpoint | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b | ||
) |
Midpoint of 2 xyzTriples.
Referenced by HDmakerMover::apply(), HDmakerMover::find_midpoint(), and zinc2_homodimer_setup::rollmove_to_inverse_C2_symmetry().
void numeric::midpoint | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b, | ||
xyzTriple< T > & | m | ||
) |
Midpoint of 2 xyzTriples: Return via argument (slightly faster)
xyzVector< T > numeric::midpoint | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b | ||
) |
Midpoint of 2 xyzVectors.
void numeric::midpoint | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b, | ||
xyzVector< T > & | m | ||
) |
Midpoint of 2 xyzVectors: Return via argument (slightly faster)
Definition at line 47 of file numeric.functions.hh.
Referenced by abs_difference(), ccd_angle(), numeric::geometry::hashing::xyzStripeHash::clash(), numeric::geometry::hashing::xyzStripeHash::clash_amount(), numeric::geometry::hashing::xyzStripeHash::clash_check_ball(), numeric::geometry::hashing::xyzStripeHash::clash_not_resid(), numeric::geometry::hashing::xyzStripeHash::clash_raw(), do_min(), eq_tol(), numeric::geometry::hashing::xyzStripeHash::fill_pairs(), gcd(), ge_tol(), gt_tol(), numeric::geometry::hashing::xyzStripeHash::init(), numeric::geometry::hashing::xyzStripeHashWithMeta< float >::init(), le_tol(), lt_tol(), min(), numeric::geometry::hashing::xyzStripeHash::nbcount(), numeric::geometry::hashing::xyzStripeHashWithMeta< float >::nbcount(), numeric::geometry::hashing::xyzStripeHash::nbcount_raw(), numeric::interpolation::Histogram< typename, typename >::set_params(), numeric::kinematic_closure::solve_sturm(), numeric::geometry::hashing::xyzStripeHash::visit(), numeric::geometry::hashing::xyzStripeHashWithMeta< float >::visit(), numeric::geometry::hashing::xyzStripeHash::visit_lax(), and numeric::geometry::hashing::xyzStripeHashWithMeta< float >::visit_lax().
Definition at line 56 of file numeric.functions.hh.
Definition at line 65 of file numeric.functions.hh.
min( unsigned short int, unsigned short int )
Definition at line 74 of file numeric.functions.hh.
min( unsigned int, unsigned int )
Definition at line 83 of file numeric.functions.hh.
T numeric::min | ( | utility::vector1< T > const & | values | ) |
Definition at line 92 of file util.hh.
References test.T200_Scoring::ii, min(), and test.T007_TracerIO::T.
min( unsigned long int, unsigned long int )
Definition at line 92 of file numeric.functions.hh.
Definition at line 101 of file numeric.functions.hh.
Definition at line 110 of file numeric.functions.hh.
min( long double, long double )
Definition at line 119 of file numeric.functions.hh.
|
inline |
min( a, b, c )
Definition at line 133 of file numeric.functions.hh.
|
inline |
|
inline |
min( a, b, c, d, e )
Definition at line 153 of file numeric.functions.hh.
|
inline |
min( a, b, c, d, e, f )
Definition at line 163 of file numeric.functions.hh.
xyzTriple< T > numeric::min | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b | ||
) |
xyzTriple with min coordinates of two xyzTriples
xyzVector< T > numeric::min | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b | ||
) |
xyzVector with min coordinates of two xyzVectors
|
inline |
x(mod y) computational modulo returning magnitude < | y | and sign of x
Definition at line 464 of file numeric.functions.hh.
Referenced by gcd(), numeric::RemainderSelector< T, bool >::remainder(), and numeric::RemainderSelector< T, true >::remainder().
|
inline |
x(mod y) mathematical modulo returning magnitude < | y | and sign of y
Definition at line 502 of file numeric.functions.hh.
Referenced by numeric::interpolation::periodic_range::full::bilinearly_interpolated(), numeric::interpolation::periodic_range::half::bilinearly_interpolated(), numeric::interpolation::periodic_range::half::bin(), numeric::interpolation::periodic_range::full::bin(), numeric::interpolation::Histogram< typename, typename >::bin_number(), numeric::interpolation::periodic_range::half::interpolated(), numeric::interpolation::periodic_range::full::interpolated(), nonnegative_principal_angle(), nonnegative_principal_angle_degrees(), and nonnegative_principal_angle_radians().
void numeric::multiply | ( | xyzTriple< T > const & | v, |
T const & | t, | ||
xyzTriple< T > & | r | ||
) |
Multiply: xyzTriple * T.
void numeric::multiply | ( | T const & | t, |
xyzTriple< T > const & | v, | ||
xyzTriple< T > & | r | ||
) |
Multiply: T * xyzTriple.
void numeric::multiply | ( | xyzVector< T > const & | v, |
T const & | t, | ||
xyzVector< T > & | r | ||
) |
Multiply: xyzVector * T.
void numeric::multiply | ( | T const & | t, |
xyzVector< T > const & | v, | ||
xyzVector< T > & | r | ||
) |
Multiply: T * xyzVector.
|
inline |
nearest< R >( x ): Nearest R
Definition at line 382 of file numeric.functions.hh.
Referenced by numeric::kdtree::nearest_neighbors().
|
inline |
Nearest periodic value of angle to a base angle in radians.
Definition at line 95 of file angle.functions.hh.
References nearest_ssize(), and numeric::NumericTraits< T >::pi_2().
|
inline |
Nearest periodic value of angle to a base angle in degrees.
Definition at line 115 of file angle.functions.hh.
References nearest_ssize(), and test.T007_TracerIO::T.
|
inline |
Nearest periodic value of angle to a base angle in radians.
Definition at line 105 of file angle.functions.hh.
References nearest_ssize(), and numeric::NumericTraits< T >::pi_2().
|
inline |
nearest_int( x ): Nearest int
Definition at line 412 of file numeric.functions.hh.
References sign(), and test.T007_TracerIO::T.
|
inline |
nearest_size( x ): Nearest std::size_t
Definition at line 392 of file numeric.functions.hh.
References sign(), and test.T007_TracerIO::T.
|
inline |
nearest_ssize( x ): Nearest SSize
Definition at line 402 of file numeric.functions.hh.
References sign(), and test.T007_TracerIO::T.
Referenced by numeric::interpolation::periodic_range::half::bin(), numeric::FastRemainderSelector< T, bool >::fast_remainder(), numeric::FastRemainderSelector< T, true >::fast_remainder(), nearest_angle(), nearest_angle_degrees(), nearest_angle_radians(), numeric::RemainderSelector< T, bool >::remainder(), and numeric::RemainderSelector< T, true >::remainder().
|
inline |
nint( x ): Nearest int
Definition at line 422 of file numeric.functions.hh.
References sign(), and test.T007_TracerIO::T.
|
inline |
Positive principal value of angle in radians on [ 0, 2*pi )
Definition at line 65 of file angle.functions.hh.
References modulo().
|
inline |
Positive principal value of angle in degrees on [ 0, 360 )
Definition at line 85 of file angle.functions.hh.
References modulo(), and test.T007_TracerIO::T.
|
inline |
Positive principal value of angle in radians on [ 0, 2*pi )
Definition at line 75 of file angle.functions.hh.
References modulo().
void numeric::normalize | ( | InputIterator | first, |
InputIterator | last | ||
) |
Normalizes elements on the range [first, last)
Definition at line 37 of file prob_util.hh.
References assign_charges::first, and sum().
Referenced by cumulative(), and product().
bool numeric::not_equal_length | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b | ||
) |
Not equal length?
bool numeric::not_equal_length | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b | ||
) |
Not equal length?
|
inline |
Definition at line 161 of file MathVector_operations.hh.
|
inline |
Definition at line 178 of file MathVector_operations.hh.
References ObjexxFCL::format::X().
|
inline |
Definition at line 192 of file MathVector_operations.hh.
References ObjexxFCL::format::X().
|
inline |
compare to matrices for inequality
MATRIX_LHS | lhs matrix |
MATRIX_RHS | rhs matrix |
Definition at line 197 of file MathMatrix_operations.hh.
|
inline |
compare if all items in matrix are not equal to a given VALUE
MATRIX_LHS | matrix with values |
VALUE_RHS | value that is compared against |
Definition at line 234 of file MathMatrix_operations.hh.
References numeric::MathMatrix< T >::begin(), and numeric::MathMatrix< T >::end().
|
inline |
compare if all items in matrix are not equal to a given VALUE
VALUE_LHS | value that is compared against |
MATRIX_RHS | matrix with values |
Definition at line 249 of file MathMatrix_operations.hh.
bool numeric::operator!= | ( | BodyPosition< T > const & | p1, |
BodyPosition< T > const & | p2 | ||
) |
bool numeric::operator!= | ( | Quaternion< T > const & | q1, |
Quaternion< T > const & | q2 | ||
) |
Quaternion != Quaternion.
bool numeric::operator!= | ( | xyzMatrix< T > const & | a, |
xyzMatrix< T > const & | b | ||
) |
bool numeric::operator!= | ( | xyzMatrix< T > const & | m, |
T const & | t | ||
) |
xyzMatrix != T
bool numeric::operator!= | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b | ||
) |
bool numeric::operator!= | ( | T const & | t, |
xyzMatrix< T > const & | m | ||
) |
T != xyzMatrix.
bool numeric::operator!= | ( | xyzTriple< T > const & | v, |
T const & | t | ||
) |
xyzTriple != T
bool numeric::operator!= | ( | T const & | t, |
xyzTriple< T > const & | v | ||
) |
T != xyzTriple.
bool numeric::operator!= | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b | ||
) |
bool numeric::operator!= | ( | xyzVector< T > const & | v, |
T const & | t | ||
) |
xyzVector != T
bool numeric::operator!= | ( | T const & | t, |
xyzVector< T > const & | v | ||
) |
T != xyzVector.
|
inline |
Definition at line 2259 of file xyzMatrix.hh.
References numeric::xyzVector< typename >::x_, numeric::xyzMatrix< typename >::xx_, numeric::xyzMatrix< typename >::xy_, numeric::xyzMatrix< typename >::xz_, numeric::xyzVector< typename >::y_, numeric::xyzMatrix< typename >::yx_, numeric::xyzMatrix< typename >::yy_, numeric::xyzMatrix< typename >::yz_, numeric::xyzVector< typename >::z_, numeric::xyzMatrix< typename >::zx_, numeric::xyzMatrix< typename >::zy_, and numeric::xyzMatrix< typename >::zz_.
|
inline |
Definition at line 241 of file MathVector_operations.hh.
References numeric::MathVector< T >::begin(), numeric::MathVector< T >::end(), and test.T007_TracerIO::T.
|
inline |
Definition at line 256 of file MathVector_operations.hh.
|
inline |
Definition at line 263 of file MathVector_operations.hh.
|
inline |
multiply two matrixs of equal size by building the inner product yielding the scalar product
MATRIX_LHS | lhs matrix |
MATRIX_RHS | rhs matrix |
Definition at line 294 of file MathMatrix_operations.hh.
References numeric::MathMatrix< T >::get_number_cols(), and numeric::MathMatrix< T >::get_number_rows().
|
inline |
multiply scalar with matrix
SCALAR_LHS | lhs value to be multiplied |
MATRIX_RHS | rhs matrix |
Definition at line 363 of file MathMatrix_operations.hh.
|
inline |
multiply matrix with scalar
MATRIX_LHS | lhs matrix |
SCALAR_RHS | rhs value to be multiplied |
Definition at line 375 of file MathMatrix_operations.hh.
|
inline |
multiply matrix with vector
MATRIX_LHS | lhs matrix |
VECTOR | vector to be multiplied |
Definition at line 387 of file MathMatrix_operations.hh.
References numeric::MathMatrix< T >::get_number_cols(), and numeric::MathMatrix< T >::get_number_rows().
Quaternion< T > numeric::operator* | ( | Quaternion< T > const & | q2, |
Quaternion< T > const & | q1 | ||
) |
xyzTriple< T > numeric::operator* | ( | xyzTriple< T > const & | v, |
T const & | t | ||
) |
xyzTriple * T
xyzTriple< T > numeric::operator* | ( | T const & | t, |
xyzTriple< T > const & | v | ||
) |
T * xyzTriple.
xyzVector< T > numeric::operator* | ( | xyzVector< T > const & | v, |
T const & | t | ||
) |
xyzVector * T
xyzMatrix< T > numeric::operator* | ( | xyzMatrix< T > const & | a, |
xyzMatrix< T > const & | b | ||
) |
xyzVector< T > numeric::operator* | ( | T const & | t, |
xyzVector< T > const & | v | ||
) |
T * xyzVector.
xyzMatrix< T > numeric::operator* | ( | xyzMatrix< T > const & | m, |
T const & | t | ||
) |
xyzMatrix * T
xyzMatrix< T > numeric::operator* | ( | T const & | t, |
xyzMatrix< T > const & | m | ||
) |
T * xyzMatrix.
|
inline |
multiply matrix with scalar
MATRIX_LHS | matrix to multiply to |
SCALAR | scalar to be multiplied |
Definition at line 140 of file MathMatrix_operations.hh.
References numeric::MathMatrix< T >::begin(), and numeric::MathMatrix< T >::end().
|
inline |
Definition at line 136 of file MathVector_operations.hh.
|
inline |
Definition at line 199 of file MathVector_operations.hh.
|
inline |
Definition at line 213 of file MathVector_operations.hh.
|
inline |
Definition at line 227 of file MathVector_operations.hh.
|
inline |
sum two matrixs of equal size
MATRIX_LHS | lhs matrix |
MATRIX_RHS | rhs matrix |
Definition at line 265 of file MathMatrix_operations.hh.
|
inline |
add value to matrix
MATRIX_LHS | lhs matrix |
VALUE_RHS | rhs value to be added |
Definition at line 315 of file MathMatrix_operations.hh.
|
inline |
add matrix to value
VALUE_LHS | lhs value to be added |
MATRIX_RHS | rhs matrix |
Definition at line 327 of file MathMatrix_operations.hh.
xyzTriple< T > numeric::operator+ | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b | ||
) |
xyzTriple< T > numeric::operator+ | ( | xyzTriple< T > const & | v, |
T const & | t | ||
) |
xyzTriple + T
xyzTriple< T > numeric::operator+ | ( | T const & | t, |
xyzTriple< T > const & | v | ||
) |
T + xyzTriple.
xyzVector< T > numeric::operator+ | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b | ||
) |
xyzMatrix< T > numeric::operator+ | ( | xyzMatrix< T > const & | a, |
xyzMatrix< T > const & | b | ||
) |
xyzVector< T > numeric::operator+ | ( | xyzVector< T > const & | v, |
T const & | t | ||
) |
xyzVector + T
xyzMatrix< T > numeric::operator+ | ( | xyzMatrix< T > const & | m, |
T const & | t | ||
) |
xyzMatrix + T
xyzVector< T > numeric::operator+ | ( | T const & | t, |
xyzVector< T > const & | v | ||
) |
T + xyzVector.
xyzMatrix< T > numeric::operator+ | ( | T const & | t, |
xyzMatrix< T > const & | m | ||
) |
T + xyzMatrix.
|
inline |
add one matrix to another
MATRIX_LHS | matrix to add to |
MATRIX_RHS | matrix to add |
Definition at line 51 of file MathMatrix_operations.hh.
References numeric::MathMatrix< T >::begin(), and numeric::MathMatrix< T >::end().
|
inline |
add scalar to matrix
MATRIX_LHS | matrix to add to |
VALUE | scalar to be added |
Definition at line 104 of file MathMatrix_operations.hh.
References numeric::MathMatrix< T >::begin(), and numeric::MathMatrix< T >::end().
|
inline |
Definition at line 129 of file MathVector_operations.hh.
References test.T007_TracerIO::T.
|
inline |
Definition at line 206 of file MathVector_operations.hh.
|
inline |
Definition at line 220 of file MathVector_operations.hh.
|
inline |
Definition at line 234 of file MathVector_operations.hh.
|
inline |
subtract two matrixs of equal size
MATRIX_LHS | lhs matrix |
MATRIX_RHS | rhs matrix |
Definition at line 279 of file MathMatrix_operations.hh.
|
inline |
subtract value from matrix
MATRIX_LHS | lhs matrix |
VALUE_RHS | rhs value to be subtracted |
Definition at line 339 of file MathMatrix_operations.hh.
|
inline |
subtract matrix from value
VALUE_LHS | rhs value to be subtracted |
MATRIX_RHS | lhs matrix |
Definition at line 351 of file MathMatrix_operations.hh.
References numeric::MathMatrix< T >::size().
xyzTriple< T > numeric::operator- | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b | ||
) |
xyzTriple< T > numeric::operator- | ( | xyzTriple< T > const & | v, |
T const & | t | ||
) |
xyzTriple - T
xyzTriple< T > numeric::operator- | ( | T const & | t, |
xyzTriple< T > const & | v | ||
) |
T - xyzTriple.
xyzVector< T > numeric::operator- | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b | ||
) |
xyzMatrix< T > numeric::operator- | ( | xyzMatrix< T > const & | a, |
xyzMatrix< T > const & | b | ||
) |
xyzVector< T > numeric::operator- | ( | xyzVector< T > const & | v, |
T const & | t | ||
) |
xyzVector - T
xyzMatrix< T > numeric::operator- | ( | xyzMatrix< T > const & | m, |
T const & | t | ||
) |
xyzMatrix - T
xyzVector< T > numeric::operator- | ( | T const & | t, |
xyzVector< T > const & | v | ||
) |
T - xyzVector.
xyzMatrix< T > numeric::operator- | ( | T const & | t, |
xyzMatrix< T > const & | m | ||
) |
T - xyzMatrix.
|
inline |
subtract one matrix from another
MATRIX_LHS | matrix to subtract from |
MATRIX_RHS | matrix to subtract |
Definition at line 71 of file MathMatrix_operations.hh.
References numeric::MathMatrix< T >::begin(), and numeric::MathMatrix< T >::end().
|
inline |
subtract scalar from matrix
MATRIX_LHS | matrix to subtract from |
VALUE | scalar to be added |
Definition at line 122 of file MathMatrix_operations.hh.
References numeric::MathMatrix< T >::begin(), and numeric::MathMatrix< T >::end().
|
inline |
Definition at line 270 of file MathVector_operations.hh.
|
inline |
Definition at line 277 of file MathVector_operations.hh.
|
inline |
Definition at line 284 of file MathVector_operations.hh.
|
inline |
divide matrix with scalar
MATRIX_LHS | lhs matrix |
SCALAR_RHS | rhs value to be divided by |
Definition at line 405 of file MathMatrix_operations.hh.
|
inline |
divide scalar by matrix
SCALAR_LHS | lhs value to be divided |
MATRIX_RHS | rhs matrix to be used to divide the scalar |
Definition at line 417 of file MathMatrix_operations.hh.
References numeric::MathMatrix< T >::size().
xyzTriple< T > numeric::operator/ | ( | xyzTriple< T > const & | v, |
T const & | t | ||
) |
xyzTriple / T
xyzVector< T > numeric::operator/ | ( | xyzVector< T > const & | v, |
T const & | t | ||
) |
xyzVector / T
xyzMatrix< T > numeric::operator/ | ( | xyzMatrix< T > const & | m, |
T const & | t | ||
) |
xyzMatrix / T
|
inline |
divide one matrix by another
MATRIX_LHS | matrix to divided |
MATRIX_RHS | matrix to divide by |
Definition at line 92 of file MathMatrix_operations.hh.
|
inline |
divide matrix by scalar
MATRIX_LHS | matrix to divide |
SCALAR | scalar to divide by |
Definition at line 158 of file MathMatrix_operations.hh.
References numeric::MathMatrix< T >::begin(), and numeric::MathMatrix< T >::end().
bool numeric::operator< | ( | xyzMatrix< T > const & | a, |
xyzMatrix< T > const & | b | ||
) |
bool numeric::operator< | ( | xyzMatrix< T > const & | m, |
T const & | t | ||
) |
xyzMatrix < T
bool numeric::operator< | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b | ||
) |
bool numeric::operator< | ( | T const & | t, |
xyzMatrix< T > const & | m | ||
) |
T < xyzMatrix.
bool numeric::operator< | ( | xyzTriple< T > const & | v, |
T const & | t | ||
) |
xyzTriple < T
bool numeric::operator< | ( | T const & | t, |
xyzTriple< T > const & | v | ||
) |
T < xyzTriple.
bool numeric::operator< | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b | ||
) |
bool numeric::operator< | ( | xyzVector< T > const & | v, |
T const & | t | ||
) |
xyzVector < T
bool numeric::operator< | ( | T const & | t, |
xyzVector< T > const & | v | ||
) |
T < xyzVector.
std::ostream & numeric::operator<< | ( | std::ostream & | os, |
MultiDimensionalHistogram const & | mdhist | ||
) |
Definition at line 23 of file MultiDimensionalHistogram.cc.
References numeric::MultiDimensionalHistogram::counts(), numeric::MultiDimensionalHistogram::dim_labels(), numeric::MultiDimensionalHistogram::end(), numeric::MultiDimensionalHistogram::label(), numeric::MultiDimensionalHistogram::num_bins(), numeric::MultiDimensionalHistogram::num_dimensions(), and numeric::MultiDimensionalHistogram::start().
std::ostream& numeric::operator<< | ( | std::ostream & | stream, |
xyzTransform< T > const & | m | ||
) |
stream << xyzTransform output operator
Definition at line 34 of file xyzTransform.io.hh.
References Equations::angle(), numeric::conversions::degrees(), ObjexxFCL::format::F(), BuildPackagedBindings::format, numeric::xyzVector< typename >::length(), rotation_axis(), test.T007_TracerIO::T, numeric::xyzVector< typename >::x(), numeric::xyzVector< typename >::y(), and numeric::xyzVector< typename >::z().
std::ostream& numeric::operator<< | ( | std::ostream & | stream, |
Quaternion< T > const & | q | ||
) |
stream << Quaternion output operator
Definition at line 35 of file Quaternion.io.hh.
References ObjexxFCL::uppercase(), and numeric::statistics::w().
std::ostream& numeric::operator<< | ( | std::ostream & | stream, |
xyzMatrix< T > const & | m | ||
) |
stream << xyzMatrix output operator
Definition at line 36 of file xyzMatrix.io.hh.
References ObjexxFCL::uppercase(), and numeric::statistics::w().
std::ostream& numeric::operator<< | ( | std::ostream & | stream, |
xyzVector< T > const & | v | ||
) |
stream << xyzVector output operator
Definition at line 36 of file xyzVector.io.hh.
References ObjexxFCL::uppercase(), test.T850_SubClassing::v, and numeric::statistics::w().
std::ostream& numeric::operator<< | ( | std::ostream & | stream, |
xyzTriple< T > const & | v | ||
) |
stream << xyzTriple output operator
Definition at line 36 of file xyzTriple.io.hh.
References ObjexxFCL::uppercase(), test.T850_SubClassing::v, and numeric::statistics::w().
std::ostream& numeric::operator<< | ( | std::ostream & | stream, |
BodyPosition< T > const & | p | ||
) |
stream << BodyPosition output operator
Definition at line 37 of file BodyPosition.io.hh.
References docking::p, ObjexxFCL::uppercase(), numeric::statistics::w(), and numeric::xyzVector< typename >::x().
std::ostream & numeric::operator<< | ( | ostream & | out, |
const Polynomial_1d & | poly | ||
) |
Definition at line 231 of file polynomial.cc.
References numeric::Polynomial_1d::show().
|
inline |
Definition at line 263 of file IntervalSet.hh.
References contacts::output.
std::ostream& numeric::operator<< | ( | std::ostream & | stream, |
HomogeneousTransform< T > const & | ht | ||
) |
Definition at line 638 of file HomogeneousTransform.hh.
|
inline |
Definition at line 667 of file HomogeneousTransform.hh.
bool numeric::operator<= | ( | xyzMatrix< T > const & | a, |
xyzMatrix< T > const & | b | ||
) |
bool numeric::operator<= | ( | xyzMatrix< T > const & | m, |
T const & | t | ||
) |
xyzMatrix <= T
bool numeric::operator<= | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b | ||
) |
bool numeric::operator<= | ( | T const & | t, |
xyzMatrix< T > const & | m | ||
) |
T <= xyzMatrix.
bool numeric::operator<= | ( | xyzTriple< T > const & | v, |
T const & | t | ||
) |
xyzTriple <= T
bool numeric::operator<= | ( | T const & | t, |
xyzTriple< T > const & | v | ||
) |
T <= xyzTriple.
bool numeric::operator<= | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b | ||
) |
bool numeric::operator<= | ( | xyzVector< T > const & | v, |
T const & | t | ||
) |
xyzVector <= T
bool numeric::operator<= | ( | T const & | t, |
xyzVector< T > const & | v | ||
) |
T <= xyzVector.
|
inline |
Definition at line 143 of file MathVector_operations.hh.
References numeric::MathVector< T >::begin(), numeric::MathVector< T >::end(), numeric::MathVector< T >::size(), and test.T007_TracerIO::T.
|
inline |
Definition at line 168 of file MathVector_operations.hh.
References numeric::MathVector< T >::begin(), numeric::MathVector< T >::end(), test.T007_TracerIO::T, and ObjexxFCL::format::X().
|
inline |
compare to matricess for equality
MATRIX_LHS | lhs matrix |
MATRIX_RHS | rhs matrix |
Definition at line 180 of file MathMatrix_operations.hh.
References numeric::MathMatrix< T >::begin(), numeric::MathMatrix< T >::end(), and ObjexxFCL::equal().
|
inline |
Definition at line 185 of file MathVector_operations.hh.
|
inline |
compare if all items in matrix are equal to a given VALUE
MATRIX_LHS | matrix with values |
VALUE_RHS | value that is compared against |
Definition at line 208 of file MathMatrix_operations.hh.
References numeric::MathMatrix< T >::begin(), and numeric::MathMatrix< T >::end().
|
inline |
compare if all items in matrix are equal to a given VALUE
VALUE_LHS | value that is compared against |
MATRIX_RHS | matrix with values |
Definition at line 223 of file MathMatrix_operations.hh.
bool numeric::operator== | ( | BodyPosition< T > const & | p1, |
BodyPosition< T > const & | p2 | ||
) |
bool numeric::operator== | ( | Quaternion< T > const & | q1, |
Quaternion< T > const & | q2 | ||
) |
Quaternion == Quaternion.
bool numeric::operator== | ( | xyzMatrix< T > const & | a, |
xyzMatrix< T > const & | b | ||
) |
bool numeric::operator== | ( | xyzMatrix< T > const & | m, |
T const & | t | ||
) |
xyzMatrix == T
bool numeric::operator== | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b | ||
) |
bool numeric::operator== | ( | T const & | t, |
xyzMatrix< T > const & | m | ||
) |
T == xyzMatrix.
bool numeric::operator== | ( | xyzTriple< T > const & | v, |
T const & | t | ||
) |
xyzTriple == T
bool numeric::operator== | ( | T const & | t, |
xyzTriple< T > const & | v | ||
) |
T == xyzTriple.
bool numeric::operator== | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b | ||
) |
bool numeric::operator== | ( | xyzVector< T > const & | v, |
T const & | t | ||
) |
xyzVector == T
bool numeric::operator== | ( | T const & | t, |
xyzVector< T > const & | v | ||
) |
T == xyzVector.
bool numeric::operator> | ( | xyzMatrix< T > const & | a, |
xyzMatrix< T > const & | b | ||
) |
bool numeric::operator> | ( | xyzMatrix< T > const & | m, |
T const & | t | ||
) |
xyzMatrix > T
bool numeric::operator> | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b | ||
) |
bool numeric::operator> | ( | T const & | t, |
xyzMatrix< T > const & | m | ||
) |
T > xyzMatrix.
bool numeric::operator> | ( | xyzTriple< T > const & | v, |
T const & | t | ||
) |
xyzTriple > T
bool numeric::operator> | ( | T const & | t, |
xyzTriple< T > const & | v | ||
) |
T > xyzTriple.
bool numeric::operator> | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b | ||
) |
bool numeric::operator> | ( | xyzVector< T > const & | v, |
T const & | t | ||
) |
xyzVector > T
bool numeric::operator> | ( | T const & | t, |
xyzVector< T > const & | v | ||
) |
T > xyzVector.
bool numeric::operator>= | ( | xyzMatrix< T > const & | a, |
xyzMatrix< T > const & | b | ||
) |
bool numeric::operator>= | ( | xyzMatrix< T > const & | m, |
T const & | t | ||
) |
xyzMatrix >= T
bool numeric::operator>= | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b | ||
) |
bool numeric::operator>= | ( | T const & | t, |
xyzMatrix< T > const & | m | ||
) |
T >= xyzMatrix.
bool numeric::operator>= | ( | xyzTriple< T > const & | v, |
T const & | t | ||
) |
xyzTriple >= T
bool numeric::operator>= | ( | T const & | t, |
xyzTriple< T > const & | v | ||
) |
T >= xyzTriple.
bool numeric::operator>= | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b | ||
) |
bool numeric::operator>= | ( | xyzVector< T > const & | v, |
T const & | t | ||
) |
xyzVector >= T
bool numeric::operator>= | ( | T const & | t, |
xyzVector< T > const & | v | ||
) |
T >= xyzVector.
std::istream& numeric::operator>> | ( | std::istream & | stream, |
xyzTransform< T > & | m | ||
) |
stream >> xyzTransform input operator
Definition at line 51 of file xyzTransform.io.hh.
References numeric::xyzTransform< typename >::R, and numeric::xyzTransform< typename >::t.
std::istream& numeric::operator>> | ( | std::istream & | stream, |
Quaternion< T > & | q | ||
) |
stream >> Quaternion input operator
Definition at line 66 of file Quaternion.io.hh.
References numeric::Quaternion< typename >::w(), numeric::Quaternion< typename >::x(), numeric::Quaternion< typename >::y(), and numeric::Quaternion< typename >::z().
std::istream& numeric::operator>> | ( | std::istream & | stream, |
xyzVector< T > & | v | ||
) |
stream >> xyzVector input operator
Definition at line 67 of file xyzVector.io.hh.
References numeric::xyzVector< typename >::x(), numeric::xyzVector< typename >::y(), and numeric::xyzVector< typename >::z().
std::istream& numeric::operator>> | ( | std::istream & | stream, |
xyzTriple< T > & | v | ||
) |
stream >> xyzTriple input operator
Definition at line 67 of file xyzTriple.io.hh.
References numeric::xyzTriple< typename >::x(), numeric::xyzTriple< typename >::y(), and numeric::xyzTriple< typename >::z().
std::istream& numeric::operator>> | ( | std::istream & | stream, |
BodyPosition< T > & | p | ||
) |
stream >> BodyPosition input operator
Definition at line 69 of file BodyPosition.io.hh.
References read_row(), numeric::xyzVector< typename >::x(), numeric::xyzMatrix< typename >::xx(), numeric::xyzMatrix< typename >::xy(), numeric::xyzMatrix< typename >::xz(), numeric::xyzVector< typename >::y(), numeric::xyzMatrix< typename >::yx(), numeric::xyzMatrix< typename >::yy(), numeric::xyzMatrix< typename >::yz(), numeric::xyzVector< typename >::z(), numeric::xyzMatrix< typename >::zx(), numeric::xyzMatrix< typename >::zy(), and numeric::xyzMatrix< typename >::zz().
std::istream& numeric::operator>> | ( | std::istream & | stream, |
xyzMatrix< T > & | m | ||
) |
stream >> xyzMatrix input operator
Definition at line 165 of file xyzMatrix.io.hh.
References read_row(), numeric::xyzMatrix< typename >::xx(), numeric::xyzMatrix< typename >::xy(), numeric::xyzMatrix< typename >::xz(), numeric::xyzMatrix< typename >::yx(), numeric::xyzMatrix< typename >::yy(), numeric::xyzMatrix< typename >::yz(), numeric::xyzMatrix< typename >::zx(), numeric::xyzMatrix< typename >::zy(), and numeric::xyzMatrix< typename >::zz().
|
inline |
Definition at line 291 of file MathVector_operations.hh.
References numeric::MathVector< T >::begin(), numeric::MathVector< T >::end(), ObjexxFCL::pow(), and test.T007_TracerIO::T.
|
inline |
xyzVector xyzVector outer product
Definition at line 156 of file xyz.functions.hh.
References numeric::xyzVector< typename >::x_, numeric::xyzVector< typename >::y_, and numeric::xyzVector< typename >::z_.
Referenced by instantiate_numeric_functions().
|
inline |
Principal value of angle in radians on ( -pi, pi ].
Definition at line 35 of file angle.functions.hh.
References remainder().
|
inline |
Principal value of angle in degrees on ( -180, 180 ].
Definition at line 55 of file angle.functions.hh.
References remainder(), and test.T007_TracerIO::T.
|
inline |
Principal value of angle in radians on ( -pi, pi ].
Definition at line 45 of file angle.functions.hh.
References remainder().
|
inline |
return a vector containing the eigenvalues corresponding to the first 3 principal components of the given set of points.
Definition at line 59 of file PCA.hh.
References principal_components_and_eigenvalues().
|
inline |
return a matrix containing the first 3 principal components of the given set of points. Matrix columns are principal components, first column is first component, etc.
Definition at line 50 of file PCA.hh.
References principal_components_and_eigenvalues().
Referenced by first_principal_component().
|
inline |
return a pair containing a matrix of the first 3 principal components and a vector of the corresponding eigenvalues of the given set of points.
Definition at line 68 of file PCA.hh.
References numeric::xyzMatrix< typename >::col(), numeric::xyzMatrix< typename >::col_x(), eigenvector_jacobi(), assign_charges::first, test.T007_TracerIO::T, numeric::xyzVector< typename >::x(), numeric::xyzVector< typename >::y(), and numeric::xyzVector< typename >::z().
Referenced by principal_component_eigenvalues(), and principal_components().
|
inline |
Return a pair containing a matrix (vector of vectors) of all of the principal components and a vector of the corresponding eigenvalues of the given set of points in n-dimensional space.
Note that this does not assume that the input vectors are 3-dimensional. If shift_center=false, the mean vector is not subtracted by this function. (Failure to subtract mean vector prior to function call will produce odd results, however.)
Definition at line 128 of file PCA.hh.
References runtime_assert_string_msg, and amino_acids::size.
void numeric::print_probabilities | ( | const utility::vector1< double > & | probs, |
std::ostream & | out | ||
) |
Writes probs to the specified ostream.
Definition at line 46 of file prob_util.cc.
|
inline |
Definition at line 96 of file xyz.functions.hh.
References numeric::xyzVector< typename >::x_, numeric::xyzMatrix< typename >::xx_, numeric::xyzMatrix< typename >::xy_, numeric::xyzMatrix< typename >::xz_, numeric::xyzVector< typename >::y_, numeric::xyzMatrix< typename >::yx_, numeric::xyzMatrix< typename >::yy_, numeric::xyzMatrix< typename >::yz_, numeric::xyzVector< typename >::z_, numeric::xyzMatrix< typename >::zx_, numeric::xyzMatrix< typename >::zy_, and numeric::xyzMatrix< typename >::zz_.
void numeric::product | ( | ForwardIterator | probs1_first, |
ForwardIterator | probs1_last, | ||
ForwardIterator | probs2_first, | ||
ForwardIterator | probs2_last | ||
) |
Multiplies two probability vectors with one another. Probability vectors are assumed to have equal lengths.
Definition at line 56 of file prob_util.hh.
References normalize().
Referenced by instantiate_numeric_functions(), numeric::HomogeneousTransform< double >::operator*(), and numeric::BodyPosition< typename >::transformed().
Quaternion< T > numeric::product | ( | Quaternion< T > const & | q2, |
Quaternion< T > const & | q1, | ||
bool const | precise | ||
) |
Product: Quaternion * Quaternion.
|
inline |
Definition at line 55 of file MathVector_operations.hh.
References Equations::angle(), max(), min(), numeric::MathVector< T >::norm(), and test.T007_TracerIO::T.
Referenced by proj_angl().
|
inline |
Definition at line 70 of file MathVector_operations.hh.
References proj_angl().
|
inline |
Definition at line 81 of file MathVector_operations.hh.
References proj_angl().
|
inline |
geometric center
Definition at line 193 of file xyz.functions.hh.
References numeric::xyzVector< typename >::length_squared(), numeric::xyzVector< typename >::x_, numeric::xyzVector< typename >::y_, and numeric::xyzVector< typename >::z_.
Referenced by instantiate_numeric_functions(), and rotation_matrix().
void numeric::read_probabilities_or_die | ( | const std::string & | filename, |
utility::vector1< double > * | probs | ||
) |
Loads normalized, per-residue probabilities from filename, storing the result in probs. Assumes line i holds the probability of sampling residue i. There must be 1 line for each residue in the pose on which this data will be used.
Definition at line 27 of file prob_util.cc.
References docking::p, and utility_exit_with_message.
std::istream& numeric::read_row | ( | std::istream & | stream, |
T & | x, | ||
T & | y, | ||
T & | z | ||
) |
Read an xyzMatrix row from a stream.
Definition at line 70 of file xyzMatrix.io.hh.
std::istream& numeric::read_row | ( | std::istream & | stream, |
T & | x, | ||
T & | y, | ||
T & | z, | ||
T & | t | ||
) |
Read an BodyPosition row from a stream.
Definition at line 89 of file BodyPosition.io.hh.
Referenced by operator>>().
|
inline |
Remainder of x with respect to division by y that is of smallest magnitude.
Definition at line 572 of file numeric.functions.hh.
Referenced by zlib_stream::basic_zip_streambuf< Elem, Tr, ElemA, ByteT, ByteAT >::flush(), principal_angle(), principal_angle_degrees(), principal_angle_radians(), and zlib_stream::basic_zip_streambuf< Elem, Tr, ElemA, ByteT, ByteAT >::zip_to_stream().
|
inline |
Remainder and result of conversion to a different type.
Definition at line 623 of file numeric.functions.hh.
References app.pyrosetta_toolkit.modules.SQLPDB::s.
numeric::xyzVector< platform::Real > numeric::rgb_to_hsv | ( | platform::Real | r, |
platform::Real | g, | ||
platform::Real | b | ||
) |
convert an RGB color to HSV
Definition at line 19 of file color_util.cc.
numeric::xyzVector< platform::Real > numeric::rgb_to_hsv | ( | numeric::xyzVector< platform::Real > | rgb_triplet | ) |
convert and RGB color to HSV
Definition at line 26 of file color_util.cc.
References numeric::xyzVector< typename >::maximum_value(), numeric::xyzVector< typename >::minimum_value(), numeric::xyzVector< typename >::x(), numeric::xyzVector< typename >::y(), and numeric::xyzVector< typename >::z().
|
inline |
Transformation from rotation matrix to magnitude of helical rotation.
Definition at line 790 of file xyz.functions.hh.
References ObjexxFCL::abs(), numeric::NumericTraits< T >::pi(), sin_cos_range(), test.T007_TracerIO::T, and numeric::xyzMatrix< typename >::trace().
Referenced by numeric::EulerAngles< typename >::angular_distance_between(), and instantiate_numeric_functions().
|
inline |
Transformation from rotation matrix to helical axis of rotation.
Definition at line 823 of file xyz.functions.hh.
References ObjexxFCL::abs(), max(), numeric::NumericTraits< T >::pi(), sin_cos_range(), test.T007_TracerIO::T, numeric::xyzMatrix< typename >::trace(), x(), numeric::xyzMatrix< typename >::xx_, numeric::xyzMatrix< typename >::xy_, numeric::xyzMatrix< typename >::xz_, y(), numeric::xyzMatrix< typename >::yx_, numeric::xyzMatrix< typename >::yy_, numeric::xyzMatrix< typename >::yz_, z(), numeric::xyzMatrix< typename >::zx_, numeric::xyzMatrix< typename >::zy_, and numeric::xyzMatrix< typename >::zz_.
Referenced by instantiate_numeric_functions(), operator<<(), numeric::random::random_rotation_angle(), and rotation_axis_angle().
|
inline |
Transformation from rotation matrix to compact axis-angle representation.
Definition at line 902 of file xyz.functions.hh.
References rotation_axis(), and test.T007_TracerIO::T.
Referenced by instantiate_numeric_functions().
|
inline |
Rotation matrix for rotation about an axis by an angle in radians.
Definition at line 548 of file xyz.functions.hh.
References numeric::xyzVector< typename >::normalized(), projection_matrix(), test.T007_TracerIO::T, numeric::xyzVector< typename >::x_, numeric::xyzMatrix< typename >::xx_, numeric::xyzMatrix< typename >::xy_, numeric::xyzMatrix< typename >::xz_, numeric::xyzVector< typename >::y_, numeric::xyzMatrix< typename >::yx_, numeric::xyzMatrix< typename >::yy_, numeric::xyzMatrix< typename >::yz_, numeric::xyzVector< typename >::z_, numeric::xyzMatrix< typename >::zx_, numeric::xyzMatrix< typename >::zy_, and numeric::xyzMatrix< typename >::zz_.
Referenced by numeric::xyzTransform< numeric::Real >::align(), instantiate_numeric_functions(), numeric::xyzTransform< numeric::Real >::rot(), rotation_matrix(), rotation_matrix_degrees(), rotation_matrix_radians(), zinc1_homodimer_design::setup_rollmoving(), and slice_ellipsoid_envelope().
|
inline |
Definition at line 538 of file xyz.functions.hh.
References numeric::xyzVector< typename >::magnitude(), and rotation_matrix().
|
inline |
Rotation matrix for rotation about an axis by an angle in degrees.
Definition at line 585 of file xyz.functions.hh.
References numeric::conversions::radians(), and rotation_matrix().
Referenced by numeric::random::gaussian_random_xform(), instantiate_numeric_functions(), and numeric::xyzTransform< numeric::Real >::rot_deg().
|
inline |
Rotation matrix for rotation about an axis by an angle in radians.
Definition at line 572 of file xyz.functions.hh.
References rotation_matrix().
Referenced by instantiate_numeric_functions().
T numeric::scalar_product | ( | MathVector< T > const & | VECTOR_A, |
MathVector< T > const & | VECTOR_B | ||
) |
Definition at line 88 of file MathVector_operations.hh.
|
inline |
|
inline |
Convert vector to a json_spirit Value.
Definition at line 29 of file xyz.json.hh.
References utility::tools::make_vector(), x(), numeric::xyzVector< typename >::x(), y(), numeric::xyzVector< typename >::y(), z(), and numeric::xyzVector< typename >::z().
|
inline |
sign( x )
Definition at line 324 of file numeric.functions.hh.
References test.T007_TracerIO::T.
Referenced by numeric::NearestSelector< R, T, true >::nearest(), nearest_int(), nearest_size(), nearest_ssize(), nint(), and urs_R2ang().
|
inline |
Sign transfered value.
Definition at line 334 of file numeric.functions.hh.
References ObjexxFCL::abs().
Referenced by numeric::model_quality::rmsfitca2(), and numeric::model_quality::rmsfitca3().
|
inline |
Adjust a sine or cosine value to the valid [-1,1] range if within a specified tolerance or exit with an error.
Definition at line 95 of file trig.functions.hh.
References utility::io::oc::cerr, utility::io::oc::cout, test.T007_TracerIO::T, loops_kic::tol, utility_exit, and x().
Referenced by angle_radians(), arccos(), numeric::xyzTransform< numeric::Real >::euler_angles_rad(), numeric::HomogeneousTransform< double >::euler_angles_rad(), numeric::EulerAngles< typename >::from_rotation_matrix(), rotation_angle(), rotation_axis(), numeric::xyzTransform< numeric::Real >::rotation_cosine(), and numeric::xyzTransform< numeric::Real >::rotation_sine().
T numeric::sin_of | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b | ||
) |
Sine of angle between two vectors.
T numeric::sin_of | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b, | ||
xyzTriple< T > const & | c | ||
) |
Sine of angle formed by three consecutive points.
T numeric::sin_of | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b | ||
) |
Sine of angle between two vectors.
T numeric::sin_of | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b, | ||
xyzVector< T > const & | c | ||
) |
Sine of angle formed by three consecutive points.
|
inline |
Definition at line 1089 of file xyz.functions.hh.
References numeric::sphericalVector< typename >::phi(), numeric::constants::f::pi_over_180, numeric::sphericalVector< typename >::radius(), numeric::sphericalVector< typename >::theta(), numeric::xyzVector< typename >::x(), numeric::crick_equations::xyz(), numeric::xyzVector< typename >::y(), and numeric::xyzVector< typename >::z().
|
inline |
square( x ) == x^2
Definition at line 304 of file numeric.functions.hh.
References x().
Referenced by numeric::model_quality::maxsub(), run_pep_prep(), numeric::fourier::SHT::so3_correlate(), and numeric::fourier::SHT::sph_standardize().
void numeric::subtract | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b, | ||
xyzTriple< T > & | r | ||
) |
void numeric::subtract | ( | xyzTriple< T > const & | v, |
T const & | t, | ||
xyzTriple< T > & | r | ||
) |
Subtract: xyzTriple - T.
void numeric::subtract | ( | T const & | t, |
xyzTriple< T > const & | v, | ||
xyzTriple< T > & | r | ||
) |
Subtract: T - xyzTriple.
void numeric::subtract | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b, | ||
xyzVector< T > & | r | ||
) |
void numeric::subtract | ( | xyzVector< T > const & | v, |
T const & | t, | ||
xyzVector< T > & | r | ||
) |
Subtract: xyzVector - T.
void numeric::subtract | ( | T const & | t, |
xyzVector< T > const & | v, | ||
xyzVector< T > & | r | ||
) |
Subtract: T - xyzVector.
double numeric::sum | ( | InputIterator | first, |
InputIterator | last | ||
) |
Returns the sum of all elements on the range [first, last)
Definition at line 27 of file prob_util.hh.
References assign_charges::first.
Referenced by numeric::nls::lm_lmdif(), numeric::nls::lm_lmpar(), numeric::nls::lm_qrfac(), numeric::nls::lm_qrsolv(), and normalize().
|
inline |
xyzMatrix^T * xyzVector product
Definition at line 126 of file xyz.functions.hh.
References numeric::xyzVector< typename >::x_, numeric::xyzMatrix< typename >::xx_, numeric::xyzMatrix< typename >::xy_, numeric::xyzMatrix< typename >::xz_, numeric::xyzVector< typename >::y_, numeric::xyzMatrix< typename >::yx_, numeric::xyzMatrix< typename >::yy_, numeric::xyzMatrix< typename >::yz_, numeric::xyzVector< typename >::z_, numeric::xyzMatrix< typename >::zx_, numeric::xyzMatrix< typename >::zy_, and numeric::xyzMatrix< typename >::zz_.
Referenced by instantiate_numeric_functions(), numeric::BodyPosition< typename >::inverse_transformed(), and numeric::BodyPosition< typename >::inverse_translation().
std::string numeric::truncate_and_serialize_xyz_vector | ( | xyzVector< T > | vector, |
Real | precision | ||
) |
Definition at line 26 of file xyzVector.string.hh.
References numeric::xyzVector< typename >::x(), numeric::xyzVector< typename >::y(), and numeric::xyzVector< typename >::z().
Definition at line 30 of file UniformRotationSampler.hh.
Referenced by urs_R2ang().
|
inline |
Definition at line 33 of file UniformRotationSampler.hh.
References Equations::angle(), numeric::conversions::degrees(), sign(), and urs_norm4().
Referenced by numeric::UniformRotationSampler::remove_redundant().
|
inline |
convert a vector1 of xyzVectors to an FArray2D
Definition at line 1120 of file xyz.functions.hh.
References ObjexxFCL::index(), app.surface_docking.surface_docking::input, contacts::output, x(), y(), and z().
|
inline |
Wrap the given angle in the range [-180, 180).
No conversion to degrees is implied.
Definition at line 46 of file wrap_angles.hh.
|
inline |
Wrap the given angle in the range [0, 2 * pi).
No conversion to radians is implied.
Definition at line 25 of file wrap_angles.hh.
References Equations::angle(), and numeric::NumericTraits< T >::pi_2().
Referenced by numeric::kinematic_closure::radians::torsion().
|
inline |
Wrap the given angle in the range [0, 360).
No conversion to degrees is implied.
Definition at line 39 of file wrap_angles.hh.
References Equations::angle().
|
inline |
Wrap the given angle in the range [-pi, pi).
No conversion to radians is implied.
Definition at line 32 of file wrap_angles.hh.
References numeric::NumericTraits< T >::pi().
|
inline |
Rotation matrix for rotation about the x axis by an angle in radians.
Definition at line 598 of file xyz.functions.hh.
References numeric::xyzMatrix< typename >::rows(), and test.T007_TracerIO::T.
Referenced by instantiate_numeric_functions(), x_rotation_matrix_degrees(), and x_rotation_matrix_radians().
|
inline |
Rotation matrix for rotation about the x axis by an angle in degrees.
Definition at line 629 of file xyz.functions.hh.
References numeric::conversions::radians(), and x_rotation_matrix().
Referenced by instantiate_numeric_functions(), numeric::random::random_rotation_angle(), and numeric::HomogeneousTransform< double >::set_xaxis_rotation_deg().
|
inline |
Rotation matrix for rotation about the x axis by an angle in radians.
Definition at line 617 of file xyz.functions.hh.
References x_rotation_matrix().
Referenced by instantiate_numeric_functions(), main(), and numeric::HomogeneousTransform< double >::set_xaxis_rotation_rad().
|
inline |
Definition at line 1076 of file xyz.functions.hh.
References numeric::sphericalVector< typename >::phi(), numeric::constants::f::pi_over_180, numeric::sphericalVector< typename >::radius(), numeric::sphericalVector< typename >::theta(), numeric::xyzVector< typename >::x(), numeric::xyzVector< typename >::y(), and numeric::xyzVector< typename >::z().
|
inline |
convert an xyzMatrix to a 3x3 FArray 2D
Definition at line 1166 of file xyz.functions.hh.
References contacts::output, numeric::xyzMatrix< typename >::xx(), numeric::xyzMatrix< typename >::xy(), numeric::xyzMatrix< typename >::xz(), numeric::xyzMatrix< typename >::yx(), numeric::xyzMatrix< typename >::yy(), numeric::xyzMatrix< typename >::yz(), numeric::xyzMatrix< typename >::zx(), numeric::xyzMatrix< typename >::zy(), and numeric::xyzMatrix< typename >::zz().
|
inline |
Rotation matrix for rotation about the y axis by an angle in radians.
Definition at line 641 of file xyz.functions.hh.
References numeric::xyzMatrix< typename >::rows(), and test.T007_TracerIO::T.
Referenced by instantiate_numeric_functions(), y_rotation_matrix_degrees(), and y_rotation_matrix_radians().
|
inline |
Rotation matrix for rotation about the y axis by an angle in degrees.
Definition at line 672 of file xyz.functions.hh.
References numeric::conversions::radians(), and y_rotation_matrix().
Referenced by instantiate_numeric_functions(), numeric::random::random_rotation_angle(), and numeric::HomogeneousTransform< double >::set_yaxis_rotation_deg().
|
inline |
Rotation matrix for rotation about the y axis by an angle in radians.
Definition at line 660 of file xyz.functions.hh.
References y_rotation_matrix().
Referenced by instantiate_numeric_functions(), main(), and numeric::HomogeneousTransform< double >::set_yaxis_rotation_rad().
|
inline |
Rotation matrix for rotation about the z axis by an angle in radians.
Definition at line 684 of file xyz.functions.hh.
References numeric::xyzMatrix< typename >::rows(), and test.T007_TracerIO::T.
Referenced by instantiate_numeric_functions(), zinc1_homodimer_design::setup_rollmoving(), z_rotation_matrix_degrees(), and z_rotation_matrix_radians().
|
inline |
Rotation matrix for rotation about the z axis by an angle in degrees.
Definition at line 715 of file xyz.functions.hh.
References numeric::conversions::radians(), and z_rotation_matrix().
Referenced by instantiate_numeric_functions(), numeric::random::random_rotation_angle(), and numeric::HomogeneousTransform< double >::set_zaxis_rotation_deg().
|
inline |
Rotation matrix for rotation about the z axis by an angle in radians.
Definition at line 703 of file xyz.functions.hh.
References z_rotation_matrix().
Referenced by instantiate_numeric_functions(), main(), and numeric::HomogeneousTransform< double >::set_zaxis_rotation_rad().