Rosetta
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
Namespaces | Classes | Typedefs | Enumerations | Functions
numeric Namespace Reference

Unit headers. More...

Namespaces

 alignment
 
 constants
 
 conversions
 
 coordinate_fitting
 
 crick_equations
 
 deriv
 
 expression_parser
 
 fourier
 
 geometry
 
 histograms
 
 interpolation
 
 kdtree
 
 kinematic_closure
 
 linear_algebra
 
 model_quality
 
 nls
 
 random
 
 statistics
 

Classes

class  AgglomerativeHierarchicalClusterer
 
class  AverageLinkClusterer
 
class  BodyPosition
 Rigid body 3-D position/transform. More...
 
class  Calculator
 
class  CalculatorParser
 
class  ClusteringTreeNode
 
class  ClusterOptions
 
class  ColPointers
 
class  ColsPointer
 
class  ColVectors
 
class  CompleteLinkClusterer
 
class  EulerAngles
 Euler angles 3-D orientation representation. More...
 
struct  FastRemainderSelector
 Fast remainder function selector class for non-integer types. More...
 
struct  FastRemainderSelector< T, true >
 Fast remainder function selector class for integer types. More...
 
class  HomogeneousTransform
 
class  HomogeneousTransform_Double
 
class  IntervalSet
 
class  IntervalSet_Double
 
struct  IOTraits
 Numerics input/output type traits. More...
 
struct  IOTraits< double >
 Numerics input/output type traits double specialization. More...
 
struct  IOTraits< float >
 Numerics input/output type traits float Specialization. More...
 
struct  IOTraits< int >
 Numerics input/output type traits int specialization. More...
 
struct  IOTraits< long double >
 Numerics input/output type traits long double specialization. More...
 
struct  IOTraits< long int >
 : Numerics input/output type traits long int specialization More...
 
struct  IOTraits< short int >
 Numerics input/output type traits short int specialization. More...
 
struct  IOTraits< unsigned int >
 : Numerics input/output type traits unsigned int specialization More...
 
struct  IOTraits< unsigned long int >
 Numerics input/output type traits unsigned long int specialization. More...
 
struct  IOTraits< unsigned short int >
 : Numerics input/output type traits unsigned short int specialization More...
 
class  MathMatrix
 
class  MathNTensor
 
class  MathTensor
 
class  MathVector
 
struct  ModSelector
 Mod function selector class for non-integer types. More...
 
struct  ModSelector< T, true >
 Mod function selector class for integer types. More...
 
struct  ModuloSelector
 Modulo function selector class for non-integer types. More...
 
struct  ModuloSelector< T, true >
 Modulo function selector class for integer types. More...
 
class  MultiDimensionalHistogram
 a class for accumulating a histogram of one or more numeric variables More...
 
struct  NearestSelector
 Nearest function selector class for R non-integer or T integer. More...
 
struct  NearestSelector< R, T, true >
 Nearest function selector class for R integer and T non-integer. More...
 
struct  NumericTraits
 NumericTraits: Numeric type traits. More...
 
struct  NumericTraits< double >
 NumericTraits: Numeric type traits double specialization. More...
 
struct  NumericTraits< float >
 NumericTraits: Numeric type traits float specialization. More...
 
struct  NumericTraits< long double >
 NumericTraits: Numeric type traits long double specialization. More...
 
class  Polynomial_1d
 
class  Py_xyzTransform_double
 
class  Quaternion
 Unit quaternion 3-D orientation representation. More...
 
struct  RemainderSelector
 Remainder function selector class for non-integer types. More...
 
struct  RemainderSelector< T, true >
 Remainder function selector class for integer types. More...
 
class  RocCurve
 
class  RocPoint
 
class  RowPointers
 
class  RowsPointer
 
class  RowVectors
 
class  SingleLinkClusterer
 
class  sphericalVector
 sphericalVector: Fast spherical-coordinate numeric vector More...
 
class  UniformRotationSampler
 
struct  urs_Quat
 
struct  XformHash32
 
struct  XformHash64
 
struct  Xforms
 
class  xyzMatrix
 xyzMatrix: Fast 3x3 xyz matrix template More...
 
class  xyzTransform
 
class  xyzTriple
 Fast (x,y,z)-coordinate vector container. More...
 
class  xyzVector
 xyzVector: Fast (x,y,z)-coordinate numeric vector More...
 

Typedefs

typedef BodyPosition< floatBodyPosition_float
 
typedef BodyPosition< doubleBodyPosition_double
 
typedef BodyPosition< long doubleBodyPosition_longdouble
 
typedef
utility::pointer::shared_ptr
< Calculator
CalculatorOP
 
typedef
utility::pointer::shared_ptr
< ClusteringTreeNode
ClusteringTreeNodeOP
 
typedef
utility::pointer::weak_ptr
< ClusteringTreeNode
ClusteringTreeNodeAP
 
typedef xyzVector< RealVector
 
typedef Real Length
 
typedef
utility::pointer::shared_ptr
< Polynomial_1d
Polynomial_1dOP
 
typedef
utility::pointer::shared_ptr
< Polynomial_1d const > 
Polynomial_1dCOP
 
typedef Quaternion< floatQuaternion_float
 
typedef Quaternion< doubleQuaternion_double
 
typedef Quaternion< long doubleQuaternion_longdouble
 
typedef
utility::pointer::shared_ptr
< RocPoint
RocPointOP
 
typedef
utility::pointer::shared_ptr
< RocCurve
RocCurveOP
 
typedef double Real
 
typedef platform::Size Size
 
typedef platform::SSize SSize
 
typedef
utility::pointer::shared_ptr
< UniformRotationSampler
UniformRotationSamplerOP
 
typedef
utility::pointer::shared_ptr
< UniformRotationSampler const > 
UniformRotationSamplerCOP
 
typedef xyzMatrix< boolxyzMatrix_bool
 
typedef xyzMatrix< short intxyzMatrix_short
 
typedef xyzMatrix< intxyzMatrix_int
 
typedef xyzMatrix< long intxyzMatrix_long
 
typedef xyzMatrix< unsigned
short int
xyzMatrix_ushort
 
typedef xyzMatrix< unsigned intxyzMatrix_uint
 
typedef xyzMatrix< unsigned
long int
xyzMatrix_ulong
 
typedef xyzMatrix< platform::SizexyzMatrix_Size
 
typedef xyzMatrix< platform::SizexyzMatrix_size_t
 
typedef xyzMatrix< platform::SizexyzMatrix_size
 
typedef xyzMatrix< floatxyzMatrix_float
 
typedef xyzMatrix< doublexyzMatrix_double
 
typedef xyzMatrix< long doublexyzMatrix_longdouble
 
typedef xyzMatrix< char > xyzMatrix_char
 
typedef xyzMatrix< unsigned char > xyzMatrix_uchar
 
typedef xyzMatrix< signed char > xyzMatrix_schar
 
typedef xyzTransform< floatXformf
 
typedef xyzTransform< doubleXform
 
typedef xyzTransform
< numeric::Real
xyzTransform_Real
 
typedef xyzTransform< floatxyzTransform_float
 
typedef xyzTransform< doublexyzTransform_double
 
typedef xyzTriple< boolxyzTriple_bool
 
typedef xyzTriple< short intxyzTriple_short
 
typedef xyzTriple< intxyzTriple_int
 
typedef xyzTriple< long intxyzTriple_long
 
typedef xyzTriple< unsigned
short int
xyzTriple_ushort
 
typedef xyzTriple< unsigned intxyzTriple_uint
 
typedef xyzTriple< unsigned
long int
xyzTriple_ulong
 
typedef xyzTriple< std::size_t > xyzTriple_size_t
 
typedef xyzTriple< std::size_t > xyzTriple_size
 
typedef xyzTriple< floatxyzTriple_float
 
typedef xyzTriple< doublexyzTriple_double
 
typedef xyzTriple< long doublexyzTriple_longdouble
 
typedef xyzTriple< char > xyzTriple_char
 
typedef xyzTriple< unsigned char > xyzTriple_uchar
 
typedef xyzTriple< signed char > xyzTriple_schar
 
typedef xyzVector< boolxyzVector_bool
 
typedef xyzVector< short intxyzVector_short
 
typedef xyzVector< intxyzVector_int
 
typedef xyzVector< long intxyzVector_long
 
typedef xyzVector< unsigned
short int
xyzVector_ushort
 
typedef xyzVector< unsigned intxyzVector_uint
 
typedef xyzVector< unsigned
long int
xyzVector_ulong
 
typedef xyzVector< std::size_t > xyzVector_size_t
 
typedef xyzVector< std::size_t > xyzVector_size
 
typedef xyzVector< floatxyzVector_float
 
typedef xyzVector< doublexyzVector_double
 
typedef xyzVector< long doublexyzVector_longdouble
 
typedef xyzVector< char > xyzVector_char
 
typedef xyzVector< unsigned char > xyzVector_uchar
 
typedef xyzVector< signed char > xyzVector_schar
 

Enumerations

enum  RocStatus { true_positive, true_negative, false_positive, false_negative }
 

Functions

template<class T >
void get_cluster_data (utility::vector1< T > &data_in, ClusteringTreeNodeOP cluster, utility::vector1< T > &data_out)
 
template<typename T >
principal_angle (T const &angle)
 Principal value of angle in radians on ( -pi, pi ]. More...
 
template<typename T >
principal_angle_radians (T const &angle)
 Principal value of angle in radians on ( -pi, pi ]. More...
 
template<typename T >
principal_angle_degrees (T const &angle)
 Principal value of angle in degrees on ( -180, 180 ]. More...
 
template<typename T >
nonnegative_principal_angle (T const &angle)
 Positive principal value of angle in radians on [ 0, 2*pi ) More...
 
template<typename T >
nonnegative_principal_angle_radians (T const &angle)
 Positive principal value of angle in radians on [ 0, 2*pi ) More...
 
template<typename T >
nonnegative_principal_angle_degrees (T const &angle)
 Positive principal value of angle in degrees on [ 0, 360 ) More...
 
template<typename T >
nearest_angle (T const &angle, T const &base_angle)
 Nearest periodic value of angle to a base angle in radians. More...
 
template<typename T >
nearest_angle_radians (T const &angle, T const &base_angle)
 Nearest periodic value of angle to a base angle in radians. More...
 
template<typename T >
nearest_angle_degrees (T const &angle, T const &base_angle)
 Nearest periodic value of angle to a base angle in degrees. More...
 
template<typename T >
bool operator== (BodyPosition< T > const &p1, BodyPosition< T > const &p2)
 BodyPosition == BodyPosition. More...
 
template<typename T >
bool operator!= (BodyPosition< T > const &p1, BodyPosition< T > const &p2)
 BodyPosition != BodyPosition. More...
 
template<typename T >
std::ostream & operator<< (std::ostream &stream, BodyPosition< T > const &p)
 stream << BodyPosition output operator More...
 
template<typename T >
std::istream & operator>> (std::istream &stream, BodyPosition< T > &p)
 stream >> BodyPosition input operator More...
 
template<typename T >
std::istream & read_row (std::istream &stream, T &x, T &y, T &z, T &t)
 Read an BodyPosition row from a stream. More...
 
void do_add_symbol (CalculatorParser &cp, std::string name, double value)
 
double do_abs (double a)
 
double do_pow (double a, double b)
 
double do_exp (double a)
 
double do_ln (double a)
 
double do_log10 (double a)
 
double do_log2 (double a)
 
double do_log (double a, double b)
 
double do_sqrt (double a)
 
double do_sin (double a)
 
double do_cos (double a)
 
double do_tan (double a)
 
double do_max (std::vector< double > a)
 
double do_min (std::vector< double > a)
 
double do_mean (std::vector< double > a)
 
double do_median (std::vector< double > a)
 
numeric::xyzVector
< platform::Real
rgb_to_hsv (platform::Real r, platform::Real b, platform::Real g)
 convert an RGB color to HSV More...
 
numeric::xyzVector
< platform::Real
rgb_to_hsv (numeric::xyzVector< platform::Real > rgb_triplet)
 convert and RGB color to HSV More...
 
numeric::xyzVector
< platform::Real
hsv_to_rgb (platform::Real h, platform::Real s, platform::Real v)
 convert an HSV color to RGB More...
 
numeric::xyzVector
< platform::Real
hsv_to_rgb (numeric::xyzVector< platform::Real > hsv_triplet)
 convert an HSV color to RGB More...
 
void ccd_angle (utility::vector1< xyzVector< Real > > const &F, utility::vector1< xyzVector< Real > > const &M, xyzVector< Real > const &axis_atom, xyzVector< Real > const &theta_hat, Real &alpha, Real &S)
 
template<typename T >
std::ostream & operator<< (std::ostream &stream, HomogeneousTransform< T > const &ht)
 
std::ostream & operator<< (std::ostream &stream, HomogeneousTransform< double > const &ht)
 
template<class Value >
double linear_interpolate (Value start, Value stop, unsigned curr_stage, unsigned num_stages)
 Linearly interpolates a quantity from start to stop over (num_stages + 1) stages. More...
 
template<typename T >
std::ostream & operator<< (std::ostream &output, const IntervalSet< T > &interval)
 
template<typename T >
MathMatrix< T > & operator+= (MathMatrix< T > &MATRIX_LHS, const MathMatrix< T > &MATRIX_RHS)
 add one matrix to another More...
 
template<typename T >
MathMatrix< T > & operator-= (MathMatrix< T > &MATRIX_LHS, const MathMatrix< T > &MATRIX_RHS)
 subtract one matrix from another More...
 
template<typename T >
MathMatrix< T > & operator/= (MathMatrix< T > &MATRIX_LHS, const MathMatrix< T > &)
 divide one matrix by another More...
 
template<typename T >
MathMatrix< T > & operator+= (MathMatrix< T > &MATRIX_LHS, const T &VALUE)
 add scalar to matrix More...
 
template<typename T >
MathMatrix< T > & operator-= (MathMatrix< T > &MATRIX_LHS, const T &VALUE)
 subtract scalar from matrix More...
 
template<typename T >
MathMatrix< T > & operator*= (MathMatrix< T > &MATRIX_LHS, const T &SCALAR)
 multiply matrix with scalar More...
 
template<typename T >
MathMatrix< T > & operator/= (MathMatrix< T > &MATRIX_LHS, const T &SCALAR)
 divide matrix by scalar More...
 
template<typename T >
bool operator== (const MathMatrix< T > &MATRIX_LHS, const MathMatrix< T > &MATRIX_RHS)
 compare to matricess for equality More...
 
template<typename T >
bool operator!= (const MathMatrix< T > &MATRIX_LHS, const MathMatrix< T > &MATRIX_RHS)
 compare to matrices for inequality More...
 
template<typename T >
bool operator== (const MathMatrix< T > &MATRIX_LHS, const T &VALUE_RHS)
 compare if all items in matrix are equal to a given VALUE More...
 
template<typename T >
bool operator== (const T &VALUE_LHS, const MathMatrix< T > &MATRIX_RHS)
 compare if all items in matrix are equal to a given VALUE More...
 
template<typename T >
bool operator!= (const MathMatrix< T > &MATRIX_LHS, const T &VALUE_RHS)
 compare if all items in matrix are not equal to a given VALUE More...
 
template<typename T >
bool operator!= (const T &VALUE_LHS, const MathMatrix< T > &MATRIX_RHS)
 compare if all items in matrix are not equal to a given VALUE More...
 
template<typename T >
MathMatrix< T > operator+ (const MathMatrix< T > &MATRIX_LHS, const MathMatrix< T > &MATRIX_RHS)
 sum two matrixs of equal size More...
 
template<typename T >
MathMatrix< T > operator- (const MathMatrix< T > &MATRIX_LHS, const MathMatrix< T > &MATRIX_RHS)
 subtract two matrixs of equal size More...
 
template<typename T >
MathMatrix< T > operator* (const MathMatrix< T > &MATRIX_LHS, const MathMatrix< T > &MATRIX_RHS)
 multiply two matrixs of equal size by building the inner product yielding the scalar product More...
 
template<typename T >
MathMatrix< T > operator+ (const MathMatrix< T > &MATRIX_LHS, const T &VALUE_RHS)
 add value to matrix More...
 
template<typename T >
MathMatrix< T > operator+ (const T &VALUE_LHS, const MathMatrix< T > &MATRIX_RHS)
 add matrix to value More...
 
template<typename T >
MathMatrix< T > operator- (const MathMatrix< T > &MATRIX_LHS, const T &VALUE_RHS)
 subtract value from matrix More...
 
template<typename T >
MathMatrix< T > operator- (const T &VALUE_LHS, const MathMatrix< T > &MATRIX_RHS)
 subtract matrix from value More...
 
template<typename T >
MathMatrix< T > operator* (const T &SCALAR_LHS, const MathMatrix< T > &MATRIX_RHS)
 multiply scalar with matrix More...
 
template<typename T >
MathMatrix< T > operator* (const MathMatrix< T > &MATRIX_LHS, const T &SCALAR_RHS)
 multiply matrix with scalar More...
 
template<typename T >
MathVector< T > operator* (const MathMatrix< T > &MATRIX_LHS, const MathVector< T > &VECTOR_RHS)
 multiply matrix with vector More...
 
template<typename T >
MathMatrix< T > operator/ (const MathMatrix< T > &MATRIX_LHS, const T &SCALAR_RHS)
 divide matrix with scalar More...
 
template<typename T >
MathMatrix< T > operator/ (const T &SCALAR_LHS, const MathMatrix< T > &MATRIX_RHS)
 divide scalar by matrix More...
 
template<typename T >
distance (MathVector< T > const &VECTOR_A, MathVector< T > const &VECTOR_B)
 
template<typename T >
proj_angl (MathVector< T > const &VECTOR_A, MathVector< T > const &VECTOR_B, MathVector< T > const &VECTOR_C, MathVector< T > const &VECTOR_D)
 
template<typename T >
proj_angl (MathVector< T > const &VECTOR_A, MathVector< T > const &VECTOR_B, MathVector< T > const &VECTOR_C)
 
template<typename T >
proj_angl (MathVector< T > const &VECTOR_A, MathVector< T > const &VECTOR_B)
 
template<typename T >
scalar_product (MathVector< T > const &VECTOR_A, MathVector< T > const &VECTOR_B)
 
template<typename T >
MathVector< T > MakeVector (T const &X)
 
template<typename T >
MathVector< T > MakeVector (T const &X, T const &Y)
 
template<typename T >
MathVector< T > MakeVector (T const &X, T const &Y, T const &Z)
 
template<typename T >
MathVector< T > operator- (MathVector< T > const &VECTOR)
 
template<typename T >
MathVector< T > operator+ (MathVector< T > const &VECTOR)
 
template<typename T >
bool operator== (MathVector< T > const &VECTOR_A, MathVector< T > const &VECTOR_B)
 
template<typename T >
bool operator!= (MathVector< T > const &VECTOR_A, MathVector< T > const &VECTOR_B)
 
template<typename T >
bool operator== (MathVector< T > const &VECTOR, T const &X)
 
template<typename T >
bool operator!= (MathVector< T > const &VECTOR, T const &X)
 
template<typename T >
bool operator== (T const &X, MathVector< T > const &VECTOR)
 
template<typename T >
bool operator!= (T const &X, MathVector< T > const &VECTOR)
 
template<typename T >
MathVector< T > operator+ (MathVector< T > const &VECTOR_A, MathVector< T > const &VECTOR_B)
 
template<typename T >
MathVector< T > operator- (MathVector< T > const &VECTOR_A, MathVector< T > const &VECTOR_B)
 
template<typename T >
MathVector< T > operator+ (MathVector< T > const &VECTOR, T const &X)
 
template<typename T >
MathVector< T > operator- (MathVector< T > const &VECTOR, T const &X)
 
template<typename T >
MathVector< T > operator+ (T const &X, MathVector< T > const &VECTOR)
 
template<typename T >
MathVector< T > operator- (T const &X, MathVector< T > const &VECTOR)
 
template<typename T >
operator* (MathVector< T > const &VECTOR_A, MathVector< T > const &VECTOR_B)
 
template<typename T >
MathVector< T > operator* (T const &X, MathVector< T > const &VECTOR)
 
template<typename T >
MathVector< T > operator* (MathVector< T > const &VECTOR, T const &X)
 
template<typename T >
MathVector< T > operator/ (MathVector< T > const &VECTOR, T const &X)
 
template<typename T >
MathVector< T > operator/ (MathVector< T > const &VECTOR_A, MathVector< T > const &VECTOR_B)
 
template<typename T >
MathVector< T > operator/ (T const &X, MathVector< T > const &VECTOR)
 
template<typename T >
MathVector< T > operator^ (T const &X, MathVector< T > const &VECTOR)
 
std::ostream & operator<< (std::ostream &os, MultiDimensionalHistogram const &mdhist)
 
short int min (short int const a, short int const b)
 min( short int, short int ) More...
 
int min (int const a, int const b)
 min( int, int ) More...
 
long int min (long int const a, long int const b)
 min( long int, long int ) More...
 
unsigned short int min (unsigned short int const a, unsigned short int const b)
 min( unsigned short int, unsigned short int ) More...
 
unsigned int min (unsigned int const a, unsigned int const b)
 min( unsigned int, unsigned int ) More...
 
unsigned long int min (unsigned long int const a, unsigned long int const b)
 min( unsigned long int, unsigned long int ) More...
 
float min (float const a, float const b)
 min( float, float ) More...
 
double min (double const a, double const b)
 min( double, double ) More...
 
long double min (long double const a, long double const b)
 min( long double, long double ) More...
 
template<typename T >
T const & min (T const &a, T const &b, T const &c)
 min( a, b, c ) More...
 
template<typename T >
T const & min (T const &a, T const &b, T const &c, T const &d)
 min( a, b, c, d ) More...
 
template<typename T >
T const & min (T const &a, T const &b, T const &c, T const &d, T const &e)
 min( a, b, c, d, e ) More...
 
template<typename T >
T const & min (T const &a, T const &b, T const &c, T const &d, T const &e, T const &f)
 min( a, b, c, d, e, f ) More...
 
short int max (short int const a, short int const b)
 max( short int, short int ) More...
 
int max (int const a, int const b)
 max( int, int ) More...
 
long int max (long int const a, long int const b)
 max( long int, long int ) More...
 
unsigned short int max (unsigned short int const a, unsigned short int const b)
 max( unsigned short int, unsigned short int ) More...
 
unsigned int max (unsigned int const a, unsigned int const b)
 max( unsigned int, unsigned int ) More...
 
unsigned long int max (unsigned long int const a, unsigned long int const b)
 max( unsigned long int, unsigned long int ) More...
 
float max (float const a, float const b)
 max( float, float ) More...
 
double max (double const a, double const b)
 max( double, double ) More...
 
long double max (long double const a, long double const b)
 max( long double, long double ) More...
 
template<typename T >
T const & max (T const &a, T const &b, T const &c)
 max( a, b, c ) More...
 
template<typename T >
T const & max (T const &a, T const &b, T const &c, T const &d)
 max( a, b, c, d ) More...
 
template<typename T >
T const & max (T const &a, T const &b, T const &c, T const &d, T const &e)
 max( a, b, c, d, e ) More...
 
template<typename T >
T const & max (T const &a, T const &b, T const &c, T const &d, T const &e, T const &f)
 max( a, b, c, d, e, f ) More...
 
template<typename T >
square (T const &x)
 square( x ) == x^2 More...
 
template<typename T >
cube (T const &x)
 cube( x ) == x^3 More...
 
template<typename T >
int sign (T const &x)
 sign( x ) More...
 
template<typename S , typename T >
sign_transfered (S const &sigma, T const &x)
 Sign transfered value. More...
 
template<typename T >
abs_difference (T const &a, T const &b)
 Absolute difference. More...
 
template<typename R , typename T >
nearest (T const &x)
 nearest< R >( x ): Nearest R More...
 
template<typename T >
std::size_t nearest_size (T const &x)
 nearest_size( x ): Nearest std::size_t More...
 
template<typename T >
SSize nearest_ssize (T const &x)
 nearest_ssize( x ): Nearest SSize More...
 
template<typename T >
int nearest_int (T const &x)
 nearest_int( x ): Nearest int More...
 
template<typename T >
int nint (T const &x)
 nint( x ): Nearest int More...
 
template<typename T >
mod (T const &x, T const &y)
 x(mod y) computational modulo returning magnitude < | y | and sign of x More...
 
template<typename T >
modulo (T const &x, T const &y)
 x(mod y) mathematical modulo returning magnitude < | y | and sign of y More...
 
template<typename T >
remainder (T const &x, T const &y)
 Remainder of x with respect to division by y that is of smallest magnitude. More...
 
template<typename T >
fast_remainder (T const &x, T const &y)
 Remainder of x with respect to division by y that is of smallest magnitude. More...
 
template<typename T , typename S >
remainder_conversion (T const &t, S &s)
 Remainder and result of conversion to a different type. More...
 
template<typename T >
gcd (T const &m, T const &n)
 Greatest common divisor. More...
 
template<typename T >
bool eq_tol (T const &x, T const &y, T const &r_tol, T const &a_tol)
 Equal within specified relative and absolute tolerances? More...
 
template<typename T >
bool lt_tol (T const &x, T const &y, T const &r_tol, T const &a_tol)
 Less than within specified relative and absolute tolerances? More...
 
template<typename T >
bool le_tol (T const &x, T const &y, T const &r_tol, T const &a_tol)
 Less than or equal within specified relative and absolute tolerances? More...
 
template<typename T >
bool ge_tol (T const &x, T const &y, T const &r_tol, T const &a_tol)
 Greater than or equal within specified relative and absolute tolerances? More...
 
template<typename T >
bool gt_tol (T const &x, T const &y, T const &r_tol, T const &a_tol)
 Greater than within specified relative and absolute tolerances? More...
 
bool is_a_finitenumber (double s, double a, double b)
 
template<typename T >
xyzVector< T > first_principal_component (utility::vector1< xyzVector< T > > const &coords)
 return the first principal component of the given set of points More...
 
template<typename T >
xyzMatrix< T > principal_components (utility::vector1< xyzVector< T > > const &coords)
 return a matrix containing the first 3 principal components of the given set of points. Matrix columns are principal components, first column is first component, etc. More...
 
template<typename T >
xyzVector< T > principal_component_eigenvalues (utility::vector1< xyzVector< T > > const &coords)
 return a vector containing the eigenvalues corresponding to the first 3 principal components of the given set of points. More...
 
template<typename T >
std::pair< xyzMatrix< T >
, xyzVector< T > > 
principal_components_and_eigenvalues (utility::vector1< xyzVector< T > > const &coords)
 return a pair containing a matrix of the first 3 principal components and a vector of the corresponding eigenvalues of the given set of points. More...
 
std::pair< utility::vector1
< utility::vector1< Real >
>, utility::vector1< Real > > 
principal_components_and_eigenvalues_ndimensions (utility::vector1< utility::vector1< Real > > const &coords, bool const shift_center)
 Return a pair containing a matrix (vector of vectors) of all of the principal components and a vector of the corresponding eigenvalues of the given set of points in n-dimensional space. More...
 
ostream & operator<< (ostream &out, const Polynomial_1d &poly)
 
void read_probabilities_or_die (const std::string &filename, utility::vector1< double > *probs)
 Loads normalized, per-residue probabilities from filename, storing the result in probs. Assumes line i holds the probability of sampling residue i. There must be 1 line for each residue in the pose on which this data will be used. More...
 
void print_probabilities (const utility::vector1< double > &probs, std::ostream &out)
 Writes probs to the specified ostream. More...
 
template<class InputIterator >
double sum (InputIterator first, InputIterator last)
 Returns the sum of all elements on the range [first, last) More...
 
template<class InputIterator >
void normalize (InputIterator first, InputIterator last)
 Normalizes elements on the range [first, last) More...
 
template<class RandomAccessIterator >
void cumulative (RandomAccessIterator first, RandomAccessIterator last)
 Converts pdf to cdf. More...
 
template<class ForwardIterator >
void product (ForwardIterator probs1_first, ForwardIterator probs1_last, ForwardIterator probs2_first, ForwardIterator probs2_last)
 Multiplies two probability vectors with one another. Probability vectors are assumed to have equal lengths. More...
 
template<typename T >
Quaternion< T > operator* (Quaternion< T > const &q2, Quaternion< T > const &q1)
 Quaternion * Quaternion. More...
 
template<typename T >
Quaternion< T > product (Quaternion< T > const &q2, Quaternion< T > const &q1, bool const precise)
 Product: Quaternion * Quaternion. More...
 
template<typename T >
bool operator== (Quaternion< T > const &q1, Quaternion< T > const &q2)
 Quaternion == Quaternion. More...
 
template<typename T >
bool operator!= (Quaternion< T > const &q1, Quaternion< T > const &q2)
 Quaternion != Quaternion. More...
 
template<typename T >
dot (Quaternion< T > const &q1, Quaternion< T > const &q2)
 Dot product. More...
 
template<typename T >
dot_product (Quaternion< T > const &q1, Quaternion< T > const &q2)
 Dot product. More...
 
template<typename T >
std::ostream & operator<< (std::ostream &stream, Quaternion< T > const &q)
 stream << Quaternion output operator More...
 
template<typename T >
std::istream & operator>> (std::istream &stream, Quaternion< T > &q)
 stream >> Quaternion input operator More...
 
template<typename T >
sec (T const &x)
 Secant. More...
 
template<typename T >
csc (T const &x)
 Cosecant. More...
 
template<typename T >
cot (T const &x)
 Cotangent. More...
 
template<typename T >
bool in_sin_cos_range (T const &x, T const &tol=T(.001))
 Is a sine or cosine value within a specified tolerance of the valid [-1,1] range? More...
 
template<typename T >
sin_cos_range (T const &x, T const &tol=T(.001))
 Adjust a sine or cosine value to the valid [-1,1] range if within a specified tolerance or exit with an error. More...
 
template<typename T >
arccos (T const x)
 like std::acos but with range checking More...
 
double urs_norm4 (double a, double b, double c, double d)
 
platform::Real urs_R2ang (numeric::xyzMatrix< Real > R)
 
numeric::Real median (utility::vector1< numeric::Real > const &values)
 Returns the median from a vector1 of Real values. More...
 
numeric::Real mean (utility::vector1< numeric::Real > const &values)
 
template<typename Number >
Number clamp (Number value, Number lower_bound, Number upper_bound)
 Clamps to the closed interval [lower_bound, upper_bound]. Templated type must implement operator<. More...
 
double log (double x, double base)
 Computes log(x) in the given base. More...
 
template<typename T >
bool isnan (T value)
 portable check to see if a value is NaN. More...
 
template<typename T >
bool isinf (T value)
 
bool equal_by_epsilon (numeric::Real value1, numeric::Real value2, numeric::Real epsilon)
 are two Real values are equal up to some epsilon More...
 
template<typename T >
max (utility::vector1< T > const &values)
 
template<typename T >
min (utility::vector1< T > const &values)
 
Real boltzmann_accept_probability (Real const score_before, Real const score_after, Real const temperature)
 Calculates the acceptance probability of a given score-change at the given temperature, generally used in simulated annealing algorithms. Returns a value in the range (0-1). More...
 
template<typename T >
find_nearest_value (typename utility::vector1< T > const &input_list, T key, platform::Size min_index, platform::Size max_index)
 recursive binary search that finds the value closest to key. Call find_nearest_value(input_list,value) instead. It's the driver function for this function. This fails miserably (and silently!) on a non-sorted vector, so don't do that!. More...
 
template<typename T >
find_nearest_value (typename utility::vector1< T > const &input_list, T key)
 given a vector and an input value, return the value in the vector that is closest to the input This is a wrapper for find_nearest_value(input_list,key,min,max) and insures that you're sorted. More...
 
template<typename T >
wrap_2pi (T const &angle)
 Wrap the given angle in the range [0, 2 * pi). More...
 
template<typename T >
wrap_pi (T const &angle)
 Wrap the given angle in the range [-pi, pi). More...
 
template<typename T >
wrap_360 (T const &angle)
 Wrap the given angle in the range [0, 360). More...
 
template<typename T >
wrap_180 (T const &angle)
 Wrap the given angle in the range [-180, 180). More...
 
template<typename T >
xyzVector< T > operator* (xyzMatrix< T > const &m, xyzVector< T > const &v)
 xyzMatrix * xyzVector More...
 
template<typename T >
xyzVector< T > product (xyzMatrix< T > const &m, xyzVector< T > const &v)
 xyzMatrix * xyzVector product More...
 
template<typename T >
xyzVector< T > & inplace_product (xyzMatrix< T > const &m, xyzVector< T > &v)
 xyzMatrix * xyzVector in-place product More...
 
template<typename T >
xyzVector< T > transpose_product (xyzMatrix< T > const &m, xyzVector< T > const &v)
 xyzMatrix^T * xyzVector product More...
 
template<typename T >
xyzVector< T > & inplace_transpose_product (xyzMatrix< T > const &m, xyzVector< T > &v)
 xyzMatrix^T * xyzVector in-place transpose product More...
 
template<typename T >
xyzMatrix< T > outer_product (xyzVector< T > const &a, xyzVector< T > const &b)
 xyzVector xyzVector outer product More...
 
template<typename T >
xyzMatrix< T > inverse (xyzMatrix< T > const &a)
 
template<typename T >
xyzMatrix< T > projection_matrix (xyzVector< T > const &v)
 geometric center More...
 
template<typename T >
void dihedral_radians (xyzVector< T > const &p1, xyzVector< T > const &p2, xyzVector< T > const &p3, xyzVector< T > const &p4, T &angle)
 Dihedral (torsion) angle in radians: angle value passed. More...
 
template<typename T >
dihedral_radians (xyzVector< T > const &p1, xyzVector< T > const &p2, xyzVector< T > const &p3, xyzVector< T > const &p4)
 Dihedral (torsion) angle in radians: angle value returned. More...
 
template<typename T >
void dihedral_degrees (xyzVector< T > const &p1, xyzVector< T > const &p2, xyzVector< T > const &p3, xyzVector< T > const &p4, T &angle)
 Dihedral (torsion) angle in degrees: angle value passed. More...
 
template<typename T >
dihedral_degrees (xyzVector< T > const &p1, xyzVector< T > const &p2, xyzVector< T > const &p3, xyzVector< T > const &p4)
 Dihedral (torsion) angle in degrees: angle value returned. More...
 
template<typename T >
void dihedral (xyzVector< T > const &p1, xyzVector< T > const &p2, xyzVector< T > const &p3, xyzVector< T > const &p4, T &angle)
 Dihedral (torsion) angle in degrees: angle value passed. More...
 
template<typename T >
dihedral (xyzVector< T > const &p1, xyzVector< T > const &p2, xyzVector< T > const &p3, xyzVector< T > const &p4)
 Dihedral (torsion) angle in degrees: angle value returned. More...
 
template<typename T >
xyzMatrix< T > rotation_matrix (xyzVector< T > const &axis, T const &theta)
 Rotation matrix for rotation about an axis by an angle in radians. More...
 
template<typename T >
xyzVector< T > rotation_axis (xyzMatrix< T > const &R, T &theta)
 Transformation from rotation matrix to helical axis of rotation. More...
 
template<typename T >
xyzVector< T > eigenvalue_jacobi (xyzMatrix< T > const &a, T const &tol)
 Classic Jacobi algorithm for the eigenvalues of a real symmetric matrix. More...
 
template<typename T >
xyzVector< T > eigenvector_jacobi (xyzMatrix< T > const &a, T const &tol, xyzMatrix< T > &J)
 Classic Jacobi algorithm for the eigenvalues and eigenvectors of a real symmetric matrix. More...
 
template<typename T >
void jacobi_rotation (xyzMatrix< T > const &m, int const i, int const j, xyzMatrix< T > &r)
 Jacobi rotation. More...
 
template<typename T >
sphericalVector< T > xyz_to_spherical (xyzVector< T > const &xyz)
 
template<typename T >
xyzVector< T > spherical_to_xyz (sphericalVector< T > const &spherical)
 
template<typename T >
xyzVector< T > closest_point_on_line (xyzVector< T > const &p1, xyzVector< T > const &p2, xyzVector< T > const &q)
 xyzMatrix * xyzVector More...
 
template<typename T >
xyzVector< T > center_of_mass (utility::vector1< xyzVector< T > > const &coords)
 calculate center of mass for coordinates More...
 
template<typename T >
void angle_radians (xyzVector< T > const &p1, xyzVector< T > const &p2, xyzVector< T > const &p3, T &angle)
 Plane angle in radians: angle value passed. More...
 
template<typename T >
angle_radians (xyzVector< T > const &p1, xyzVector< T > const &p2, xyzVector< T > const &p3)
 Plane angle in radians: angle value returned. More...
 
double angle_radians_double (xyzVector< double > const &p1, xyzVector< double > const &p2, xyzVector< double > const &p3)
 
template<typename T >
angle_degrees (xyzVector< T > const &p1, xyzVector< T > const &p2, xyzVector< T > const &p3)
 Plane angle in degrees: angle value returned. More...
 
double angle_degrees_double (xyzVector< double > const &p1, xyzVector< double > const &p2, xyzVector< double > const &p3)
 
template<typename T >
angle_radians (xyzVector< T > const &p1, xyzVector< T > const &p2, xyzVector< T > const &p3, xyzVector< T > const &p4)
 Angle between two vectors in radians. More...
 
double angle_radians_double (xyzVector< double > const &p1, xyzVector< double > const &p2, xyzVector< double > const &p3, xyzVector< double > const &p4)
 
template<typename T >
angle_degrees (xyzVector< T > const &p1, xyzVector< T > const &p2, xyzVector< T > const &p3, xyzVector< T > const &p4)
 Angle between two vectors in radians. More...
 
double angle_degrees_double (xyzVector< double > const &p1, xyzVector< double > const &p2, xyzVector< double > const &p3, xyzVector< double > const &p4)
 
void dihedral_radians_double (xyzVector< double > const &p1, xyzVector< double > const &p2, xyzVector< double > const &p3, xyzVector< double > const &p4, double &angle)
 
double dihedral_radians_double (xyzVector< double > const &p1, xyzVector< double > const &p2, xyzVector< double > const &p3, xyzVector< double > const &p4)
 
void dihedral_degrees_double (xyzVector< double > const &p1, xyzVector< double > const &p2, xyzVector< double > const &p3, xyzVector< double > const &p4, double &angle)
 
double dihedral_degrees_double (xyzVector< double > const &p1, xyzVector< double > const &p2, xyzVector< double > const &p3, xyzVector< double > const &p4)
 
void dihedral_double (xyzVector< double > const &p1, xyzVector< double > const &p2, xyzVector< double > const &p3, xyzVector< double > const &p4, double &angle)
 
double dihedral_double (xyzVector< double > const &p1, xyzVector< double > const &p2, xyzVector< double > const &p3, xyzVector< double > const &p4)
 
template<typename T >
xyzMatrix< T > rotation_matrix (xyzVector< T > const &axis_angle)
 
template<typename T >
xyzMatrix< T > rotation_matrix_radians (xyzVector< T > const &axis, T const &theta)
 Rotation matrix for rotation about an axis by an angle in radians. More...
 
template<typename T >
xyzMatrix< T > rotation_matrix_degrees (xyzVector< T > const &axis, T const &theta)
 Rotation matrix for rotation about an axis by an angle in degrees. More...
 
template<typename T >
xyzMatrix< T > x_rotation_matrix (T const &theta)
 Rotation matrix for rotation about the x axis by an angle in radians. More...
 
template<typename T >
xyzMatrix< T > x_rotation_matrix_radians (T const &theta)
 Rotation matrix for rotation about the x axis by an angle in radians. More...
 
template<typename T >
xyzMatrix< T > x_rotation_matrix_degrees (T const &theta)
 Rotation matrix for rotation about the x axis by an angle in degrees. More...
 
template<typename T >
xyzMatrix< T > y_rotation_matrix (T const &theta)
 Rotation matrix for rotation about the y axis by an angle in radians. More...
 
template<typename T >
xyzMatrix< T > y_rotation_matrix_radians (T const &theta)
 Rotation matrix for rotation about the y axis by an angle in radians. More...
 
template<typename T >
xyzMatrix< T > y_rotation_matrix_degrees (T const &theta)
 Rotation matrix for rotation about the y axis by an angle in degrees. More...
 
template<typename T >
xyzMatrix< T > z_rotation_matrix (T const &theta)
 Rotation matrix for rotation about the z axis by an angle in radians. More...
 
template<typename T >
xyzMatrix< T > z_rotation_matrix_radians (T const &theta)
 Rotation matrix for rotation about the z axis by an angle in radians. More...
 
template<typename T >
xyzMatrix< T > z_rotation_matrix_degrees (T const &theta)
 Rotation matrix for rotation about the z axis by an angle in degrees. More...
 
template<typename T >
xyzMatrix< T > alignVectorSets (xyzVector< T > A1, xyzVector< T > B1, xyzVector< T > A2, xyzVector< T > B2)
 Helper function to find the rotation to optimally transform the vectors A1-B1 to vectors A2-B2. More...
 
template<typename T >
rotation_angle (xyzMatrix< T > const &R)
 Transformation from rotation matrix to magnitude of helical rotation. More...
 
template<typename T >
xyzVector< T > rotation_axis_angle (xyzMatrix< T > const &R)
 Transformation from rotation matrix to compact axis-angle representation. More...
 
template<typename T >
xyzVector< T > comma_seperated_string_to_xyz (std::string triplet)
 convert a string of comma separated values "0.2,0.4,0.3" to an xyzVector More...
 
template<typename T >
ObjexxFCL::FArray2D< T > vector_of_xyzvectors_to_FArray (utility::vector1< xyzVector< T > > const &input)
 convert a vector1 of xyzVectors to an FArray2D More...
 
template<typename T >
utility::vector1< xyzVector< T > > FArray_to_vector_of_xyzvectors (ObjexxFCL::FArray2D< T > const &input)
 convert an FArray2D to a vector of xyzVectors More...
 
template<typename T >
numeric::xyzMatrix< T > FArray_to_xyzmatrix (ObjexxFCL::FArray2D< T > const &input)
 convert a 3x3 FArray 2D to an xyzMatrix More...
 
template<typename T >
ObjexxFCL::FArray2D< T > xyzmatrix_to_FArray (numeric::xyzMatrix< T > const &input)
 convert an xyzMatrix to a 3x3 FArray 2D More...
 
template<typename T >
utility::json_spirit::Value serialize (xyzVector< T > coords)
 Convert vector to a json_spirit Value. More...
 
template<typename T >
xyzVector< T > deserialize (utility::json_spirit::mArray data)
 
template<typename T >
xyzMatrix< T > operator+ (xyzMatrix< T > const &a, xyzMatrix< T > const &b)
 xyzMatrix + xyzMatrix More...
 
template<typename T >
xyzMatrix< T > operator+ (xyzMatrix< T > const &m, T const &t)
 xyzMatrix + T More...
 
template<typename T >
xyzMatrix< T > operator+ (T const &t, xyzMatrix< T > const &m)
 T + xyzMatrix. More...
 
template<typename T >
xyzMatrix< T > operator- (xyzMatrix< T > const &a, xyzMatrix< T > const &b)
 xyzMatrix - xyzMatrix More...
 
template<typename T >
xyzMatrix< T > operator- (xyzMatrix< T > const &m, T const &t)
 xyzMatrix - T More...
 
template<typename T >
xyzMatrix< T > operator- (T const &t, xyzMatrix< T > const &m)
 T - xyzMatrix. More...
 
template<typename T >
xyzMatrix< T > operator* (xyzMatrix< T > const &a, xyzMatrix< T > const &b)
 xyzMatrix * xyzMatrix More...
 
template<typename T >
xyzMatrix< T > operator* (xyzMatrix< T > const &m, T const &t)
 xyzMatrix * T More...
 
template<typename T >
xyzMatrix< T > operator* (T const &t, xyzMatrix< T > const &m)
 T * xyzMatrix. More...
 
template<typename T >
xyzMatrix< T > operator/ (xyzMatrix< T > const &m, T const &t)
 xyzMatrix / T More...
 
template<typename T >
bool operator== (xyzMatrix< T > const &a, xyzMatrix< T > const &b)
 xyzMatrix == xyzMatrix More...
 
template<typename T >
bool operator!= (xyzMatrix< T > const &a, xyzMatrix< T > const &b)
 xyzMatrix != xyzMatrix More...
 
template<typename T >
bool operator< (xyzMatrix< T > const &a, xyzMatrix< T > const &b)
 xyzMatrix < xyzMatrix More...
 
template<typename T >
bool operator<= (xyzMatrix< T > const &a, xyzMatrix< T > const &b)
 xyzMatrix <= xyzMatrix More...
 
template<typename T >
bool operator>= (xyzMatrix< T > const &a, xyzMatrix< T > const &b)
 xyzMatrix >= xyzMatrix More...
 
template<typename T >
bool operator> (xyzMatrix< T > const &a, xyzMatrix< T > const &b)
 xyzMatrix > xyzMatrix More...
 
template<typename T >
bool operator== (xyzMatrix< T > const &m, T const &t)
 xyzMatrix == T More...
 
template<typename T >
bool operator!= (xyzMatrix< T > const &m, T const &t)
 xyzMatrix != T More...
 
template<typename T >
bool operator< (xyzMatrix< T > const &m, T const &t)
 xyzMatrix < T More...
 
template<typename T >
bool operator<= (xyzMatrix< T > const &m, T const &t)
 xyzMatrix <= T More...
 
template<typename T >
bool operator>= (xyzMatrix< T > const &m, T const &t)
 xyzMatrix >= T More...
 
template<typename T >
bool operator> (xyzMatrix< T > const &m, T const &t)
 xyzMatrix > T More...
 
template<typename T >
bool operator== (T const &t, xyzMatrix< T > const &m)
 T == xyzMatrix. More...
 
template<typename T >
bool operator!= (T const &t, xyzMatrix< T > const &m)
 T != xyzMatrix. More...
 
template<typename T >
bool operator< (T const &t, xyzMatrix< T > const &m)
 T < xyzMatrix. More...
 
template<typename T >
bool operator<= (T const &t, xyzMatrix< T > const &m)
 T <= xyzMatrix. More...
 
template<typename T >
bool operator>= (T const &t, xyzMatrix< T > const &m)
 T >= xyzMatrix. More...
 
template<typename T >
bool operator> (T const &t, xyzMatrix< T > const &m)
 T > xyzMatrix. More...
 
template<typename T >
std::ostream & operator<< (std::ostream &stream, xyzMatrix< T > const &m)
 stream << xyzMatrix output operator More...
 
template<typename T >
std::istream & read_row (std::istream &stream, T &x, T &y, T &z)
 Read an xyzMatrix row from a stream. More...
 
template<typename T >
std::istream & operator>> (std::istream &stream, xyzMatrix< T > &m)
 stream >> xyzMatrix input operator More...
 
template<typename T , class OutputIterator >
void expand_xforms (OutputIterator container, xyzTransform< T > const &G1, xyzTransform< T > const &G2, xyzTransform< T > const &, int N=5, Real r=9e9, xyzVector< T > const &test_point=xyzVector< T >(Real(1.0), Real(3.0), Real(10.0)))
 
template<typename T , class OutputIterator >
void expand_xforms (OutputIterator container, xyzTransform< T > const &G1, xyzTransform< T > const &G2, int N=5, Real r=9e9, xyzVector< T > const &test_point=xyzVector< T >(Real(1.0), Real(3.0), Real(10.0)))
 
template<typename T >
std::ostream & operator<< (std::ostream &stream, xyzTransform< T > const &m)
 stream << xyzTransform output operator More...
 
template<typename T >
std::istream & operator>> (std::istream &stream, xyzTransform< T > &m)
 stream >> xyzTransform input operator More...
 
template<typename T >
xyzTriple< T > operator+ (xyzTriple< T > const &a, xyzTriple< T > const &b)
 xyzTriple + xyzTriple More...
 
template<typename T >
xyzTriple< T > operator+ (xyzTriple< T > const &v, T const &t)
 xyzTriple + T More...
 
template<typename T >
xyzTriple< T > operator+ (T const &t, xyzTriple< T > const &v)
 T + xyzTriple. More...
 
template<typename T >
xyzTriple< T > operator- (xyzTriple< T > const &a, xyzTriple< T > const &b)
 xyzTriple - xyzTriple More...
 
template<typename T >
xyzTriple< T > operator- (xyzTriple< T > const &v, T const &t)
 xyzTriple - T More...
 
template<typename T >
xyzTriple< T > operator- (T const &t, xyzTriple< T > const &v)
 T - xyzTriple. More...
 
template<typename T >
xyzTriple< T > operator* (xyzTriple< T > const &v, T const &t)
 xyzTriple * T More...
 
template<typename T >
xyzTriple< T > operator* (T const &t, xyzTriple< T > const &v)
 T * xyzTriple. More...
 
template<typename T >
xyzTriple< T > operator/ (xyzTriple< T > const &v, T const &t)
 xyzTriple / T More...
 
template<typename T >
void add (xyzTriple< T > const &a, xyzTriple< T > const &b, xyzTriple< T > &r)
 Add: xyzTriple + xyzTriple. More...
 
template<typename T >
void add (xyzTriple< T > const &v, T const &t, xyzTriple< T > &r)
 Add: xyzTriple + T. More...
 
template<typename T >
void add (T const &t, xyzTriple< T > const &v, xyzTriple< T > &r)
 Add: T + xyzTriple. More...
 
template<typename T >
void subtract (xyzTriple< T > const &a, xyzTriple< T > const &b, xyzTriple< T > &r)
 Subtract: xyzTriple - xyzTriple. More...
 
template<typename T >
void subtract (xyzTriple< T > const &v, T const &t, xyzTriple< T > &r)
 Subtract: xyzTriple - T. More...
 
template<typename T >
void subtract (T const &t, xyzTriple< T > const &v, xyzTriple< T > &r)
 Subtract: T - xyzTriple. More...
 
template<typename T >
void multiply (xyzTriple< T > const &v, T const &t, xyzTriple< T > &r)
 Multiply: xyzTriple * T. More...
 
template<typename T >
void multiply (T const &t, xyzTriple< T > const &v, xyzTriple< T > &r)
 Multiply: T * xyzTriple. More...
 
template<typename T >
void divide (xyzTriple< T > const &v, T const &t, xyzTriple< T > &r)
 Divide: xyzTriple / T. More...
 
template<typename T >
xyzTriple< T > min (xyzTriple< T > const &a, xyzTriple< T > const &b)
 xyzTriple with min coordinates of two xyzTriples More...
 
template<typename T >
xyzTriple< T > max (xyzTriple< T > const &a, xyzTriple< T > const &b)
 xyzTriple with max coordinates of two xyzTriples More...
 
template<typename T >
distance (xyzTriple< T > const &a, xyzTriple< T > const &b)
 Distance. More...
 
template<typename T >
distance_squared (xyzTriple< T > const &a, xyzTriple< T > const &b)
 Distance squared. More...
 
template<typename T >
dot (xyzTriple< T > const &a, xyzTriple< T > const &b)
 Dot product. More...
 
template<typename T >
dot_product (xyzTriple< T > const &a, xyzTriple< T > const &b)
 Dot product. More...
 
template<typename T >
inner_product (xyzTriple< T > const &a, xyzTriple< T > const &b)
 Inner product ( == dot product ) More...
 
template<typename T >
xyzTriple< T > cross (xyzTriple< T > const &a, xyzTriple< T > const &b)
 Cross product. More...
 
template<typename T >
xyzTriple< T > cross_product (xyzTriple< T > const &a, xyzTriple< T > const &b)
 Cross product. More...
 
template<typename T >
void cross (xyzTriple< T > const &a, xyzTriple< T > const &b, xyzTriple< T > &c)
 Cross product: Return via argument (slightly faster) More...
 
template<typename T >
void cross_product (xyzTriple< T > const &a, xyzTriple< T > const &b, xyzTriple< T > &c)
 Cross product: Return via argument (slightly faster) More...
 
template<typename T >
xyzTriple< T > midpoint (xyzTriple< T > const &a, xyzTriple< T > const &b)
 Midpoint of 2 xyzTriples. More...
 
template<typename T >
void midpoint (xyzTriple< T > const &a, xyzTriple< T > const &b, xyzTriple< T > &m)
 Midpoint of 2 xyzTriples: Return via argument (slightly faster) More...
 
template<typename T >
xyzTriple< T > center (xyzTriple< T > const &a, xyzTriple< T > const &b)
 Center of 2 xyzTriples. More...
 
template<typename T >
void center (xyzTriple< T > const &a, xyzTriple< T > const &b, xyzTriple< T > &m)
 Center of 2 xyzTriples: Return via argument (slightly faster) More...
 
template<typename T >
xyzTriple< T > center (xyzTriple< T > const &a, xyzTriple< T > const &b, xyzTriple< T > const &c)
 Center of 3 xyzTriples. More...
 
template<typename T >
void center (xyzTriple< T > const &a, xyzTriple< T > const &b, xyzTriple< T > const &c, xyzTriple< T > &m)
 Center of 3 xyzTriples: Return via argument (slightly faster) More...
 
template<typename T >
xyzTriple< T > center (xyzTriple< T > const &a, xyzTriple< T > const &b, xyzTriple< T > const &c, xyzTriple< T > const &d)
 Center of 4 xyzTriples. More...
 
template<typename T >
void center (xyzTriple< T > const &a, xyzTriple< T > const &b, xyzTriple< T > const &c, xyzTriple< T > const &d, xyzTriple< T > &m)
 Center of 4 xyzTriples: Return via argument (slightly faster) More...
 
template<typename T >
angle_of (xyzTriple< T > const &a, xyzTriple< T > const &b)
 Angle between two vectors (in radians on [ 0, pi ]) More...
 
template<typename T >
angle_of (xyzTriple< T > const &a, xyzTriple< T > const &b, xyzTriple< T > const &c)
 Angle formed by three consecutive points (in radians on [ 0, pi ]) More...
 
template<typename T >
cos_of (xyzTriple< T > const &a, xyzTriple< T > const &b)
 Cosine of angle between two vectors. More...
 
template<typename T >
cos_of (xyzTriple< T > const &a, xyzTriple< T > const &b, xyzTriple< T > const &c)
 Cosine of angle formed by three consecutive points. More...
 
template<typename T >
sin_of (xyzTriple< T > const &a, xyzTriple< T > const &b)
 Sine of angle between two vectors. More...
 
template<typename T >
sin_of (xyzTriple< T > const &a, xyzTriple< T > const &b, xyzTriple< T > const &c)
 Sine of angle formed by three consecutive points. More...
 
template<typename T >
bool operator== (xyzTriple< T > const &a, xyzTriple< T > const &b)
 xyzTriple == xyzTriple More...
 
template<typename T >
bool operator!= (xyzTriple< T > const &a, xyzTriple< T > const &b)
 xyzTriple != xyzTriple More...
 
template<typename T >
bool operator< (xyzTriple< T > const &a, xyzTriple< T > const &b)
 xyzTriple < xyzTriple More...
 
template<typename T >
bool operator<= (xyzTriple< T > const &a, xyzTriple< T > const &b)
 xyzTriple <= xyzTriple More...
 
template<typename T >
bool operator>= (xyzTriple< T > const &a, xyzTriple< T > const &b)
 xyzTriple >= xyzTriple More...
 
template<typename T >
bool operator> (xyzTriple< T > const &a, xyzTriple< T > const &b)
 xyzTriple > xyzTriple More...
 
template<typename T >
bool operator== (xyzTriple< T > const &v, T const &t)
 xyzTriple == T More...
 
template<typename T >
bool operator!= (xyzTriple< T > const &v, T const &t)
 xyzTriple != T More...
 
template<typename T >
bool operator< (xyzTriple< T > const &v, T const &t)
 xyzTriple < T More...
 
template<typename T >
bool operator<= (xyzTriple< T > const &v, T const &t)
 xyzTriple <= T More...
 
template<typename T >
bool operator>= (xyzTriple< T > const &v, T const &t)
 xyzTriple >= T More...
 
template<typename T >
bool operator> (xyzTriple< T > const &v, T const &t)
 xyzTriple > T More...
 
template<typename T >
bool operator== (T const &t, xyzTriple< T > const &v)
 T == xyzTriple. More...
 
template<typename T >
bool operator!= (T const &t, xyzTriple< T > const &v)
 T != xyzTriple. More...
 
template<typename T >
bool operator< (T const &t, xyzTriple< T > const &v)
 T < xyzTriple. More...
 
template<typename T >
bool operator<= (T const &t, xyzTriple< T > const &v)
 T <= xyzTriple. More...
 
template<typename T >
bool operator>= (T const &t, xyzTriple< T > const &v)
 T >= xyzTriple. More...
 
template<typename T >
bool operator> (T const &t, xyzTriple< T > const &v)
 T > xyzTriple. More...
 
template<typename T >
bool equal_length (xyzTriple< T > const &a, xyzTriple< T > const &b)
 Equal length? More...
 
template<typename T >
bool not_equal_length (xyzTriple< T > const &a, xyzTriple< T > const &b)
 Not equal length? More...
 
template<typename T >
std::ostream & operator<< (std::ostream &stream, xyzTriple< T > const &v)
 stream << xyzTriple output operator More...
 
template<typename T >
std::istream & operator>> (std::istream &stream, xyzTriple< T > &v)
 stream >> xyzTriple input operator More...
 
template<typename T >
platform::Size hash_value (xyzVector< T > const &v)
 
template<typename T >
xyzVector< T > operator+ (xyzVector< T > const &a, xyzVector< T > const &b)
 xyzVector + xyzVector More...
 
template<typename T >
xyzVector< T > operator+ (xyzVector< T > const &v, T const &t)
 xyzVector + T More...
 
template<typename T >
xyzVector< T > operator+ (T const &t, xyzVector< T > const &v)
 T + xyzVector. More...
 
template<typename T >
xyzVector< T > operator- (xyzVector< T > const &a, xyzVector< T > const &b)
 xyzVector - xyzVector More...
 
template<typename T >
xyzVector< T > operator- (xyzVector< T > const &v, T const &t)
 xyzVector - T More...
 
template<typename T >
xyzVector< T > operator- (T const &t, xyzVector< T > const &v)
 T - xyzVector. More...
 
template<typename T >
xyzVector< T > operator* (xyzVector< T > const &v, T const &t)
 xyzVector * T More...
 
template<typename T >
xyzVector< T > operator* (T const &t, xyzVector< T > const &v)
 T * xyzVector. More...
 
template<typename T >
xyzVector< T > operator/ (xyzVector< T > const &v, T const &t)
 xyzVector / T More...
 
template<typename T >
void add (xyzVector< T > const &a, xyzVector< T > const &b, xyzVector< T > &r)
 Add: xyzVector + xyzVector. More...
 
template<typename T >
void add (xyzVector< T > const &v, T const &t, xyzVector< T > &r)
 Add: xyzVector + T. More...
 
template<typename T >
void add (T const &t, xyzVector< T > const &v, xyzVector< T > &r)
 Add: T + xyzVector. More...
 
template<typename T >
void subtract (xyzVector< T > const &a, xyzVector< T > const &b, xyzVector< T > &r)
 Subtract: xyzVector - xyzVector. More...
 
template<typename T >
void subtract (xyzVector< T > const &v, T const &t, xyzVector< T > &r)
 Subtract: xyzVector - T. More...
 
template<typename T >
void subtract (T const &t, xyzVector< T > const &v, xyzVector< T > &r)
 Subtract: T - xyzVector. More...
 
template<typename T >
void multiply (xyzVector< T > const &v, T const &t, xyzVector< T > &r)
 Multiply: xyzVector * T. More...
 
template<typename T >
void multiply (T const &t, xyzVector< T > const &v, xyzVector< T > &r)
 Multiply: T * xyzVector. More...
 
template<typename T >
void divide (xyzVector< T > const &v, T const &t, xyzVector< T > &r)
 Divide: xyzVector / T. More...
 
template<typename T >
xyzVector< T > min (xyzVector< T > const &a, xyzVector< T > const &b)
 xyzVector with min coordinates of two xyzVectors More...
 
template<typename T >
xyzVector< T > max (xyzVector< T > const &a, xyzVector< T > const &b)
 xyzVector with max coordinates of two xyzVectors More...
 
template<typename T >
dot (xyzVector< T > const &a, xyzVector< T > const &b)
 Distance. More...
 
template<typename T >
dot_product (xyzVector< T > const &a, xyzVector< T > const &b)
 Dot product. More...
 
template<typename T >
inner_product (xyzVector< T > const &a, xyzVector< T > const &b)
 Inner product ( == dot product ) More...
 
template<typename T >
xyzVector< T > cross (xyzVector< T > const &a, xyzVector< T > const &b)
 Cross product. More...
 
template<typename T >
xyzVector< T > cross_product (xyzVector< T > const &a, xyzVector< T > const &b)
 Cross product. More...
 
template<typename T >
void cross (xyzVector< T > const &a, xyzVector< T > const &b, xyzVector< T > &c)
 Cross product: Return via argument (slightly faster) More...
 
template<typename T >
void cross_product (xyzVector< T > const &a, xyzVector< T > const &b, xyzVector< T > &c)
 Cross product: Return via argument (slightly faster) More...
 
template<typename T >
xyzVector< T > midpoint (xyzVector< T > const &a, xyzVector< T > const &b)
 Midpoint of 2 xyzVectors. More...
 
template<typename T >
void midpoint (xyzVector< T > const &a, xyzVector< T > const &b, xyzVector< T > &m)
 Midpoint of 2 xyzVectors: Return via argument (slightly faster) More...
 
template<typename T >
xyzVector< T > center (xyzVector< T > const &a, xyzVector< T > const &b)
 Center of 2 xyzVectors. More...
 
template<typename T >
void center (xyzVector< T > const &a, xyzVector< T > const &b, xyzVector< T > &m)
 Center of 2 xyzVectors: Return via argument (slightly faster) More...
 
template<typename T >
xyzVector< T > center (xyzVector< T > const &a, xyzVector< T > const &b, xyzVector< T > const &c)
 Center of 3 xyzVectors. More...
 
template<typename T >
void center (xyzVector< T > const &a, xyzVector< T > const &b, xyzVector< T > const &c, xyzVector< T > &m)
 Center of 3 xyzVectors: Return via argument (slightly faster) More...
 
template<typename T >
xyzVector< T > center (xyzVector< T > const &a, xyzVector< T > const &b, xyzVector< T > const &c, xyzVector< T > const &d)
 Center of 4 xyzVectors. More...
 
template<typename T >
void center (xyzVector< T > const &a, xyzVector< T > const &b, xyzVector< T > const &c, xyzVector< T > const &d, xyzVector< T > &m)
 Center of 4 xyzVectors: Return via argument (slightly faster) More...
 
template<typename T >
angle_of (xyzVector< T > const &a, xyzVector< T > const &b)
 Angle between two vectors (in radians on [ 0, pi ]) More...
 
template<typename T >
angle_of (xyzVector< T > const &a, xyzVector< T > const &b, xyzVector< T > const &c)
 Angle formed by three consecutive points (in radians on [ 0, pi ]) More...
 
template<typename T >
cos_of (xyzVector< T > const &a, xyzVector< T > const &b)
 Cosine of angle between two vectors. More...
 
template<typename T >
cos_of (xyzVector< T > const &a, xyzVector< T > const &b, xyzVector< T > const &c)
 Cosine of angle formed by three consecutive points. More...
 
template<typename T >
sin_of (xyzVector< T > const &a, xyzVector< T > const &b)
 Sine of angle between two vectors. More...
 
template<typename T >
sin_of (xyzVector< T > const &a, xyzVector< T > const &b, xyzVector< T > const &c)
 Sine of angle formed by three consecutive points. More...
 
template<typename T >
bool operator== (xyzVector< T > const &a, xyzVector< T > const &b)
 xyzVector == xyzVector More...
 
template<typename T >
bool operator!= (xyzVector< T > const &a, xyzVector< T > const &b)
 xyzVector != xyzVector More...
 
template<typename T >
bool operator< (xyzVector< T > const &a, xyzVector< T > const &b)
 xyzVector < xyzVector More...
 
template<typename T >
bool operator<= (xyzVector< T > const &a, xyzVector< T > const &b)
 xyzVector <= xyzVector More...
 
template<typename T >
bool operator>= (xyzVector< T > const &a, xyzVector< T > const &b)
 xyzVector >= xyzVector More...
 
template<typename T >
bool operator> (xyzVector< T > const &a, xyzVector< T > const &b)
 xyzVector > xyzVector More...
 
template<typename T >
bool operator== (xyzVector< T > const &v, T const &t)
 xyzVector == T More...
 
template<typename T >
bool operator!= (xyzVector< T > const &v, T const &t)
 xyzVector != T More...
 
template<typename T >
bool operator< (xyzVector< T > const &v, T const &t)
 xyzVector < T More...
 
template<typename T >
bool operator<= (xyzVector< T > const &v, T const &t)
 xyzVector <= T More...
 
template<typename T >
bool operator>= (xyzVector< T > const &v, T const &t)
 xyzVector >= T More...
 
template<typename T >
bool operator> (xyzVector< T > const &v, T const &t)
 xyzVector > T More...
 
template<typename T >
bool operator== (T const &t, xyzVector< T > const &v)
 T == xyzVector. More...
 
template<typename T >
bool operator!= (T const &t, xyzVector< T > const &v)
 T != xyzVector. More...
 
template<typename T >
bool operator< (T const &t, xyzVector< T > const &v)
 T < xyzVector. More...
 
template<typename T >
bool operator<= (T const &t, xyzVector< T > const &v)
 T <= xyzVector. More...
 
template<typename T >
bool operator>= (T const &t, xyzVector< T > const &v)
 T >= xyzVector. More...
 
template<typename T >
bool operator> (T const &t, xyzVector< T > const &v)
 T > xyzVector. More...
 
template<typename T >
bool equal_length (xyzVector< T > const &a, xyzVector< T > const &b)
 Equal length? More...
 
template<typename T >
bool not_equal_length (xyzVector< T > const &a, xyzVector< T > const &b)
 Not equal length? More...
 
template<typename T >
std::ostream & operator<< (std::ostream &stream, xyzVector< T > const &v)
 stream << xyzVector output operator More...
 
template<typename T >
std::istream & operator>> (std::istream &stream, xyzVector< T > &v)
 stream >> xyzVector input operator More...
 
template<typename T >
std::string truncate_and_serialize_xyz_vector (xyzVector< T > vector, Real precision)
 

Detailed Description

Unit headers.

A collection of functions for working with probabilities.

Vector0's that can perform mathmatical functions.

construction/destructor of 3-D Matrix's with some functions

Mathmatical functions for the MathMatrix class.

construction/destructor of Matrix's with some functions

Tricubic spline for smoothly interpolating a function in 3 dimensions.

Polycubic spline for smoothly interpolating a function in n dimensions.

Cubic spline for all your evil desires.

Bicubic spline for all your hearts desires.

read the header file!

A 2D histogram based upon a map structure.

A 1D histogram based upon a map structure.

Boost headers.

Utility headers.

Core headers Utility headers C++ headers

Numeric headers Utility headers C++ headers

C++ headers

Very simple class for histograms based upon maps. You provide the key, which is templated, meaning that the key can be a string, real, size, enum. It will return a count, if you want it

Author
Steven Combs

Very simple class for histograms based upon maps. You provide the key, which is templated, meaning that the two keys can be strings, reals, sizes. It will return a count, if you want it

Author
Steven Combs
References:
Numerical Recipes in c++ 2nd edition Ralf Mueller
Author
Steven Combs, Ralf Mueller, Jens Meiler

This is an implementation of an algorithm from Numerical Recipes. It relies heavily on the implementation of the cubic spline (from Numerical Recipes), the MathMatrix, and the MathVector. You MUST USE the MathVector and MathMatrix implementations to use this function. The spline is very customizable and allows you to define the border behaviors (start/end of spline values). If you use the e_Natural (enum) BorderFlag, the start/end (border) of the spline will be linear. This may not be ideal for scoring functions as you want the a smoothing effect at the start/end (border) values. Instead, you probably want to use the e_FirstDeriv (enum) BorderFlag with the first derivate (private member value firstbe_) set to 0. This will cause a smoothing out of the start/end (border) of spline. If you want the splie to be continuous, you should use the e_Periodic (enum) BorderFlag.

To "train" the spline, use must provide the spline with a MathMatrix (numeric::MathMatrix). Lets look at an example. x values y 1__2__ 3 .1 | 1 2 3 | v .3 | 4 5 6 | a .5 | 7 8 9 | l |__________| u e s

Given the above Matrix (MathMatrix) You would want your start (START[2] private member value start_) values to be START[] = {1,.1}. You would then want to assign the delta (DELTA[2], private member value delta_) values to DELTA[] = {1,.2}. These delta values is the change between your x values and your y values. For example, the change between x1 and x2 is 1. Therefore, the delta for the x-values will be 1. For y values, you have y.1, y.3 which is a change of .2, therefore the delta will be .2. You do not have to specify an end because the algorithm will stop when it reaches the last value in the matrix.

Finally, the LinCont determins that if the argument x or y is outside the range decide if the spline should be continued linearly.

References:
Numerical Recipes in c++ 2nd edition Ralf Mueller
Author
Steven Combs, Ralf Mueller, Jens Meiler

The below comments are for the Bicubic spline but apply for the cubic spline. This is an implementation of an algorithm from Numerical Recipes. It relies heavily on the implementation of the cubic spline (from Numerical Recipes), the MathMatrix, and the MathVector. You MUST USE the MathVector and MathMatrix implementations to use this function. The spline is very customizable and allows you to define the border behaviors (start/end of spline values). If you use the e_Natural (enum) BorderFlag, the start/end (border) of the spline will be linear. This may not be ideal for scoring functions as you want the a smoothing effect at the start/end (border) values. Instead, you probably want to use the e_FirstDeriv (enum) BorderFlag with the first derivate (private member value firstbe_) set to 0. This will cause a smoothing out of the start/end (border) of spline. If you want the splie to be continuous, you should use the e_Periodic (enum) BorderFlag.

To "train" the spline, use must provide the spline with a MathMatrix (numeric::MathMatrix). Lets look at an example. x values y 1__2__ 3 .1 | 1 2 3 | v .3 | 4 5 6 | a .5 | 7 8 9 | l |__________| u e s

Given the above Matrix (MathMatrix) You would want your start (START[2] private member value start_) values to be START[] = {1,.1}. You would then want to assign the delta (DELTA[2], private member value delta_) values to DELTA[] = {1,.2}. These delta values is the change between your x values and your y values. For example, the change between x1 and x2 is 1. Therefore, the delta for the x-values will be 1. For y values, you have y.1, y.3 which is a change of .2, therefore the delta will be .2. You do not have to specify an end because the algorithm will stop when it reaches the last value in the matrix.

Finally, the LinCont determins that if the argument x or y is outside the range decide if the spline should be continued linearly.

References:
Numerical Recipes in c++ 2nd edition Ralf Mueller
Author
Steven Combs, Ralf Mueller, Jens Meiler
References:
Numerical Recipes in c++ 2nd edition Ralf Mueller
Author
Steven Combs, Ralf Mueller, Jens Meiler ported to Rosetta by Andrew Leaver-Fay generalized to N dimensions by Andrew Watkins
References:
Numerical Recipes in c++ 2nd edition Ralf Mueller
Author
Steven Combs, Ralf Mueller, Jens Meiler ported to Rosetta by Andrew Leaver-Fay generalized to n dimensions by Andrew Watkins
References:
Numerical Recipes in c++ 2nd edition Ralf Mueller
Author
Steven Combs, Ralf Mueller, Jens Meiler ported to Rosetta by Andrew Leaver-Fay

This is an implementation of an algorithm that was taken from BCL (Jens Meiler) The Matrix is constructed out of arrays and places values into rows/columns based on however many columns/rows you specify. Actual operations of the MathMatrix are implemented in numeric/MathMatrix_operations.hh. To access specific values (elements), you must use the operator (). For example: to access row 5, column 3 of a matrix, you would use matrix(5,3). *****NOTE**** The MathMatrix class is indexed at 0!!!!

References:
Nils Woetzl Jens Meiler
Author
Steven Combs, Nils Woetzl, Jens Meiler

This is an implementation of an algorithm that was taken from BCL (Jens Meiler) The Matrix is construction is found in numeric/MathMatrix.hh. These are mathematical functions that can be used by the MathMatrix class. ***Note that these are outside of class, but having the operators take two arguments ensures that no one will use the functions unknowningly

References:
Nils Woetzl Jens Meiler
Author
Steven Combs, Nils Woetzl, Jens Meiler

This is an implementation of an algorithm that was taken from BCL (Jens Meiler) *****NOTE**** The MathTensor class is indexed at 0!!!!

References:
Nils Woetzl Jens Meiler
Author
Steven Combs, Nils Woetzl, Jens Meiler
ported to Rosetta by Andrew Leaver-Fay (aleav.nosp@m.erfa.nosp@m.y@gma.nosp@m.il.c.nosp@m.om)
generalized to N dimensions by Andrew Watkins

This is an implementation of an algorithm that was taken from BCL (Jens Meiler) *****NOTE**** The MathTensor class is indexed at 0!!!!

References:
Nils Woetzl Jens Meiler
Author
Steven Combs, Nils Woetzl, Jens Meiler
ported to Rosetta by Andrew Leaver-Fay (aleav.nosp@m.erfa.nosp@m.y@gma.nosp@m.il.c.nosp@m.om)

This is an implementation of an algorithm that was taken from BCL (Jens Meiler) The MathVector is constructed just like utility::vector0, however this class does not inherit from utility::vector0. It is implemented this way to avoid confusion. Most functions from the std::vector / utility::vector0 ARE NOT included. This is a vector that performs mathematical functions, not a "storage" vector. Actual mathematical functions found in numeric/MathVector_operations. To access specific values you must use the operator (). For example: vector(5), will give you the value at index 5. This is done to distinguish from utility::vector!

References:
Nils Woetzl Jens Meiler
Author
Steven Combs, Nils Woetzl, Jens Meiler

This is an implementation of an algorithm that was taken from BCL (Jens Meiler) The Matrix is construction is found in numeric/MathVector.hh. These are mathematical functions that can be used by the MathVector class. ***Note that these are outside of class, but having the operators take two arguments ensures that no one will use the functions unknowningly

References:
Nils Woetzl Jens Meiler
Author
Steven Combs, Nils Woetzl, Jens Meiler

Currently supported RG types: standard - build in C++ random generator ran3 - old generator from previos version of rosetta

Typedef Documentation

Definition at line 28 of file BodyPosition.fwd.hh.

Definition at line 23 of file BodyPosition.fwd.hh.

Definition at line 29 of file BodyPosition.fwd.hh.

typedef utility::pointer::shared_ptr<Calculator> numeric::CalculatorOP

Definition at line 22 of file Calculator.fwd.hh.

Definition at line 25 of file ClusteringTreeNode.fwd.hh.

Definition at line 22 of file ClusteringTreeNode.fwd.hh.

Definition at line 23 of file cyclic_coordinate_descent.cc.

typedef utility::pointer::shared_ptr< Polynomial_1d const > numeric::Polynomial_1dCOP

Definition at line 25 of file polynomial.fwd.hh.

typedef utility::pointer::shared_ptr< Polynomial_1d > numeric::Polynomial_1dOP

Definition at line 22 of file polynomial.fwd.hh.

Definition at line 28 of file Quaternion.fwd.hh.

Definition at line 23 of file Quaternion.fwd.hh.

Definition at line 29 of file Quaternion.fwd.hh.

Definition at line 39 of file types.hh.

typedef utility::pointer::shared_ptr<RocCurve> numeric::RocCurveOP

Definition at line 32 of file roc_curve.fwd.hh.

typedef utility::pointer::shared_ptr<RocPoint> numeric::RocPointOP

Definition at line 29 of file roc_curve.fwd.hh.

Definition at line 42 of file types.hh.

Definition at line 43 of file types.hh.

typedef utility::pointer::shared_ptr< UniformRotationSampler const > numeric::UniformRotationSamplerCOP

Definition at line 26 of file UniformRotationSampler.fwd.hh.

Definition at line 24 of file UniformRotationSampler.fwd.hh.

Definition at line 22 of file cyclic_coordinate_descent.cc.

Definition at line 34 of file xyzTransform.fwd.hh.

Definition at line 29 of file xyzTransform.fwd.hh.

Definition at line 29 of file xyzMatrix.fwd.hh.

Definition at line 46 of file xyzMatrix.fwd.hh.

Definition at line 44 of file xyzMatrix.fwd.hh.

Definition at line 43 of file xyzMatrix.fwd.hh.

Definition at line 35 of file xyzMatrix.fwd.hh.

Definition at line 36 of file xyzMatrix.fwd.hh.

Definition at line 45 of file xyzMatrix.fwd.hh.

Definition at line 48 of file xyzMatrix.fwd.hh.

Definition at line 34 of file xyzMatrix.fwd.hh.

Definition at line 40 of file xyzMatrix.fwd.hh.

Definition at line 42 of file xyzMatrix.fwd.hh.

Definition at line 41 of file xyzMatrix.fwd.hh.

Definition at line 47 of file xyzMatrix.fwd.hh.

Definition at line 38 of file xyzMatrix.fwd.hh.

Definition at line 39 of file xyzMatrix.fwd.hh.

Definition at line 37 of file xyzMatrix.fwd.hh.

Definition at line 38 of file xyzTransform.fwd.hh.

Definition at line 37 of file xyzTransform.fwd.hh.

Definition at line 36 of file xyzTransform.fwd.hh.

Definition at line 28 of file xyzTriple.fwd.hh.

Definition at line 44 of file xyzTriple.fwd.hh.

Definition at line 42 of file xyzTriple.fwd.hh.

Definition at line 41 of file xyzTriple.fwd.hh.

Definition at line 34 of file xyzTriple.fwd.hh.

Definition at line 35 of file xyzTriple.fwd.hh.

Definition at line 43 of file xyzTriple.fwd.hh.

Definition at line 46 of file xyzTriple.fwd.hh.

Definition at line 33 of file xyzTriple.fwd.hh.

Definition at line 40 of file xyzTriple.fwd.hh.

Definition at line 39 of file xyzTriple.fwd.hh.

Definition at line 45 of file xyzTriple.fwd.hh.

Definition at line 37 of file xyzTriple.fwd.hh.

Definition at line 38 of file xyzTriple.fwd.hh.

Definition at line 36 of file xyzTriple.fwd.hh.

Definition at line 28 of file xyzVector.fwd.hh.

Definition at line 44 of file xyzVector.fwd.hh.

Definition at line 42 of file xyzVector.fwd.hh.

Definition at line 41 of file xyzVector.fwd.hh.

Definition at line 34 of file xyzVector.fwd.hh.

Definition at line 35 of file xyzVector.fwd.hh.

Definition at line 43 of file xyzVector.fwd.hh.

Definition at line 46 of file xyzVector.fwd.hh.

Definition at line 33 of file xyzVector.fwd.hh.

Definition at line 40 of file xyzVector.fwd.hh.

Definition at line 39 of file xyzVector.fwd.hh.

Definition at line 45 of file xyzVector.fwd.hh.

Definition at line 37 of file xyzVector.fwd.hh.

Definition at line 38 of file xyzVector.fwd.hh.

Definition at line 36 of file xyzVector.fwd.hh.

Enumeration Type Documentation

Enumerator
true_positive 
true_negative 
false_positive 
false_negative 

Definition at line 21 of file roc_curve.fwd.hh.

Function Documentation

template<typename T >
T numeric::abs_difference ( T const &  a,
T const &  b 
)
inline

Absolute difference.

Definition at line 344 of file numeric.functions.hh.

References max(), and min().

template<typename T >
void numeric::add ( xyzTriple< T > const &  a,
xyzTriple< T > const &  b,
xyzTriple< T > &  r 
)
template<typename T >
void numeric::add ( xyzTriple< T > const &  v,
T const &  t,
xyzTriple< T > &  r 
)

Add: xyzTriple + T.

template<typename T >
void numeric::add ( T const &  t,
xyzTriple< T > const &  v,
xyzTriple< T > &  r 
)

Add: T + xyzTriple.

template<typename T >
void numeric::add ( xyzVector< T > const &  a,
xyzVector< T > const &  b,
xyzVector< T > &  r 
)
template<typename T >
void numeric::add ( xyzVector< T > const &  v,
T const &  t,
xyzVector< T > &  r 
)

Add: xyzVector + T.

template<typename T >
void numeric::add ( T const &  t,
xyzVector< T > const &  v,
xyzVector< T > &  r 
)

Add: T + xyzVector.

template<typename T >
xyzMatrix< T > numeric::alignVectorSets ( xyzVector< T >  A1,
xyzVector< T >  B1,
xyzVector< T >  A2,
xyzVector< T >  B2 
)
inline
template<typename T >
T numeric::angle_degrees ( xyzVector< T > const &  p1,
xyzVector< T > const &  p2,
xyzVector< T > const &  p3 
)
inline

Plane angle in degrees: angle value returned.

Note
Given three positions in a chain ( p1, p2, p3 ), calculates the plane angle in degrees between the vectors p2->p1 and p2->p3
Angle returned is on [ 0, 180 ]

Definition at line 273 of file xyz.functions.hh.

References Equations::angle(), angle_radians(), numeric::conversions::degrees(), and test.T007_TracerIO::T.

Referenced by angle_degrees_double().

template<typename T >
T numeric::angle_degrees ( xyzVector< T > const &  p1,
xyzVector< T > const &  p2,
xyzVector< T > const &  p3,
xyzVector< T > const &  p4 
)
inline

Angle between two vectors in radians.

Note
Given two vectors (p1->p2 & p3->p4), calculate the angle between them
Angle returned is on [ 0, pi ]

Definition at line 327 of file xyz.functions.hh.

References Equations::angle(), angle_radians(), numeric::conversions::degrees(), and test.T007_TracerIO::T.

double numeric::angle_degrees_double ( xyzVector< double > const &  p1,
xyzVector< double > const &  p2,
xyzVector< double > const &  p3 
)
inline

Definition at line 285 of file xyz.functions.hh.

References angle_degrees().

double numeric::angle_degrees_double ( xyzVector< double > const &  p1,
xyzVector< double > const &  p2,
xyzVector< double > const &  p3,
xyzVector< double > const &  p4 
)
inline

Definition at line 339 of file xyz.functions.hh.

References angle_degrees().

template<typename T >
T numeric::angle_of ( xyzTriple< T > const &  a,
xyzTriple< T > const &  b 
)
template<typename T >
T numeric::angle_of ( xyzTriple< T > const &  a,
xyzTriple< T > const &  b,
xyzTriple< T > const &  c 
)

Angle formed by three consecutive points (in radians on [ 0, pi ])

template<typename T >
T numeric::angle_of ( xyzVector< T > const &  a,
xyzVector< T > const &  b 
)

Angle between two vectors (in radians on [ 0, pi ])

template<typename T >
T numeric::angle_of ( xyzVector< T > const &  a,
xyzVector< T > const &  b,
xyzVector< T > const &  c 
)

Angle formed by three consecutive points (in radians on [ 0, pi ])

template<typename T >
void numeric::angle_radians ( xyzVector< T > const &  p1,
xyzVector< T > const &  p2,
xyzVector< T > const &  p3,
T &  angle 
)
inline

Plane angle in radians: angle value passed.

Note
Given thre positions in a chain ( p1, p2, p3 ), calculates the plane angle in radians between the vectors p2->p1 and p2->p3
Angle returned is on [ 0, pi ]

Definition at line 225 of file xyz.functions.hh.

References test.T850_SubClassing::a, test.T850_SubClassing::b, dot(), and sin_cos_range().

Referenced by add_bond_angle_constraint(), angle_degrees(), angle_radians(), and angle_radians_double().

template<typename T >
T numeric::angle_radians ( xyzVector< T > const &  p1,
xyzVector< T > const &  p2,
xyzVector< T > const &  p3 
)
inline

Plane angle in radians: angle value returned.

Note
Given three positions in a chain ( p1, p2, p3 ), calculates the plane angle in radians between the vectors p2->p1 and p2->p3
Angle returned is on [ 0, pi ]

Definition at line 248 of file xyz.functions.hh.

References Equations::angle(), angle_radians(), and test.T007_TracerIO::T.

template<typename T >
T numeric::angle_radians ( xyzVector< T > const &  p1,
xyzVector< T > const &  p2,
xyzVector< T > const &  p3,
xyzVector< T > const &  p4 
)
inline

Angle between two vectors in radians.

Note
Given two vectors (p1->p2 & p3->p4), calculate the angle between them
Angle returned is on [ 0, pi ]

Definition at line 298 of file xyz.functions.hh.

References test.T850_SubClassing::a, Equations::angle(), test.T850_SubClassing::b, dot(), sin_cos_range(), and test.T007_TracerIO::T.

double numeric::angle_radians_double ( xyzVector< double > const &  p1,
xyzVector< double > const &  p2,
xyzVector< double > const &  p3 
)
inline

Definition at line 260 of file xyz.functions.hh.

References angle_radians().

double numeric::angle_radians_double ( xyzVector< double > const &  p1,
xyzVector< double > const &  p2,
xyzVector< double > const &  p3,
xyzVector< double > const &  p4 
)
inline

Definition at line 313 of file xyz.functions.hh.

References angle_radians().

template<typename T >
T numeric::arccos ( T const  x)
inline
Real numeric::boltzmann_accept_probability ( Real const  score_before,
Real const  score_after,
Real const  temperature 
)
inline

Calculates the acceptance probability of a given score-change at the given temperature, generally used in simulated annealing algorithms. Returns a value in the range (0-1).

Definition at line 106 of file util.hh.

References max(), and min().

void numeric::ccd_angle ( utility::vector1< xyzVector< Real > > const &  F,
utility::vector1< xyzVector< Real > > const &  M,
xyzVector< Real > const &  axis_atom,
xyzVector< Real > const &  theta_hat,
Real &  alpha,
Real &  S 
)
Parameters
<F>the coordinates of the fixed target atoms
<M>the coordinates of the moving positions to be overlapped with the target atoms
<theta_hat>axis vector of the torsion angle
<alpha>empty angle to be calculated
<S>empty deviation to be calculated

The objective of an individual cyclic coordinate descent (CCD) move is to minimize the deviation between a set of points that should perfectly superimpose. The deviation squared (S) can be expressed as:

S = Sum(r^2 + f^2) - 2 Sum[r(f_vector dot r_hat)] cos theta - 2 Sum[r(f_vector dot s_hat)] sin theta

The derivative of S with respect to theta (the angle about the rotation axis):

dS/dtheta = 2 Sum[r(f_vector dot r_hat)] sin theta - 2 Sum[r(f_vector dot s_hat)] cos theta

Setting dS/dtheta to zero gives the minimal value of theta, which we call alpha:

tan alpha = Sum[r(f_vector dot s_hat] / Sum[r(f_vector dot r_hat]

If we define... a = Sum(r^2 + f^2) b = 2 Sum[r(f_vector dot r_hat)] c = 2 Sum[r(f_vector dot s_hat)] then S can be rewritten: S = a - b cos alpha - c sin alpha and we can express alpha as tan alpha = c / b

Definition at line 53 of file cyclic_coordinate_descent.cc.

References ObjexxFCL::abs(), cross(), numeric::conversions::degrees(), dot(), ObjexxFCL::format::F(), numeric::xyzVector< typename >::is_unit(), numeric::xyzVector< typename >::length(), test.T007_TracerIO::M, min(), and numeric::xyzVector< typename >::normalized().

template<typename T >
xyzTriple< T > numeric::center ( xyzTriple< T > const &  a,
xyzTriple< T > const &  b 
)
template<typename T >
void numeric::center ( xyzTriple< T > const &  a,
xyzTriple< T > const &  b,
xyzTriple< T > &  m 
)

Center of 2 xyzTriples: Return via argument (slightly faster)

template<typename T >
xyzTriple< T > numeric::center ( xyzTriple< T > const &  a,
xyzTriple< T > const &  b,
xyzTriple< T > const &  c 
)

Center of 3 xyzTriples.

template<typename T >
void numeric::center ( xyzTriple< T > const &  a,
xyzTriple< T > const &  b,
xyzTriple< T > const &  c,
xyzTriple< T > &  m 
)

Center of 3 xyzTriples: Return via argument (slightly faster)

template<typename T >
xyzTriple< T > numeric::center ( xyzTriple< T > const &  a,
xyzTriple< T > const &  b,
xyzTriple< T > const &  c,
xyzTriple< T > const &  d 
)

Center of 4 xyzTriples.

template<typename T >
void numeric::center ( xyzTriple< T > const &  a,
xyzTriple< T > const &  b,
xyzTriple< T > const &  c,
xyzTriple< T > const &  d,
xyzTriple< T > &  m 
)

Center of 4 xyzTriples: Return via argument (slightly faster)

template<typename T >
xyzVector< T > numeric::center ( xyzVector< T > const &  a,
xyzVector< T > const &  b 
)

Center of 2 xyzVectors.

template<typename T >
void numeric::center ( xyzVector< T > const &  a,
xyzVector< T > const &  b,
xyzVector< T > &  m 
)

Center of 2 xyzVectors: Return via argument (slightly faster)

template<typename T >
xyzVector< T > numeric::center ( xyzVector< T > const &  a,
xyzVector< T > const &  b,
xyzVector< T > const &  c 
)

Center of 3 xyzVectors.

template<typename T >
void numeric::center ( xyzVector< T > const &  a,
xyzVector< T > const &  b,
xyzVector< T > const &  c,
xyzVector< T > &  m 
)

Center of 3 xyzVectors: Return via argument (slightly faster)

template<typename T >
xyzVector< T > numeric::center ( xyzVector< T > const &  a,
xyzVector< T > const &  b,
xyzVector< T > const &  c,
xyzVector< T > const &  d 
)

Center of 4 xyzVectors.

template<typename T >
void numeric::center ( xyzVector< T > const &  a,
xyzVector< T > const &  b,
xyzVector< T > const &  c,
xyzVector< T > const &  d,
xyzVector< T > &  m 
)

Center of 4 xyzVectors: Return via argument (slightly faster)

template<typename T >
xyzVector< T > numeric::center_of_mass ( utility::vector1< xyzVector< T > > const &  coords)
inline

calculate center of mass for coordinates

Definition at line 79 of file xyz.functions.hh.

Referenced by numeric::geometry::residual_squared_of_points_to_plane(), and numeric::geometry::vector_normal_to_ring_plane_of_best_fit().

template<typename Number >
Number numeric::clamp ( Number  value,
Number  lower_bound,
Number  upper_bound 
)

Clamps to the closed interval [lower_bound, upper_bound]. Templated type must implement operator<.

Definition at line 30 of file util.hh.

References value.

template<typename T >
xyzVector< T > numeric::closest_point_on_line ( xyzVector< T > const &  p1,
xyzVector< T > const &  p2,
xyzVector< T > const &  q 
)
inline

xyzMatrix * xyzVector

Note
Same as product( xyzMatrix, xyzVector ) return the point closest to point p3 that lies on the line defined by p1 and p2

Definition at line 66 of file xyz.functions.hh.

References dot_product(), and numeric::xyzVector< typename >::magnitude_squared().

template<typename T >
xyzVector<T> numeric::comma_seperated_string_to_xyz ( std::string  triplet)
inline

convert a string of comma separated values "0.2,0.4,0.3" to an xyzVector

Definition at line 1103 of file xyz.functions.hh.

References utility::from_string(), runtime_assert, utility::string_split(), test.T007_TracerIO::T, and numeric::crick_equations::xyz().

template<typename T >
T numeric::cos_of ( xyzTriple< T > const &  a,
xyzTriple< T > const &  b 
)

Cosine of angle between two vectors.

template<typename T >
T numeric::cos_of ( xyzTriple< T > const &  a,
xyzTriple< T > const &  b,
xyzTriple< T > const &  c 
)

Cosine of angle formed by three consecutive points.

template<typename T >
T numeric::cos_of ( xyzVector< T > const &  a,
xyzVector< T > const &  b 
)

Cosine of angle between two vectors.

template<typename T >
T numeric::cos_of ( xyzVector< T > const &  a,
xyzVector< T > const &  b,
xyzVector< T > const &  c 
)

Cosine of angle formed by three consecutive points.

template<typename T >
T numeric::cot ( T const &  x)
inline

Cotangent.

Definition at line 64 of file trig.functions.hh.

References test.T007_TracerIO::T.

template<typename T >
xyzTriple< T > numeric::cross ( xyzTriple< T > const &  a,
xyzTriple< T > const &  b 
)
template<typename T >
void numeric::cross ( xyzTriple< T > const &  a,
xyzTriple< T > const &  b,
xyzTriple< T > &  c 
)

Cross product: Return via argument (slightly faster)

template<typename T >
xyzVector< T > numeric::cross ( xyzVector< T > const &  a,
xyzVector< T > const &  b 
)

Cross product.

template<typename T >
void numeric::cross ( xyzVector< T > const &  a,
xyzVector< T > const &  b,
xyzVector< T > &  c 
)

Cross product: Return via argument (slightly faster)

template<typename T >
xyzTriple< T > numeric::cross_product ( xyzTriple< T > const &  a,
xyzTriple< T > const &  b 
)
template<typename T >
void numeric::cross_product ( xyzTriple< T > const &  a,
xyzTriple< T > const &  b,
xyzTriple< T > &  c 
)

Cross product: Return via argument (slightly faster)

template<typename T >
xyzVector< T > numeric::cross_product ( xyzVector< T > const &  a,
xyzVector< T > const &  b 
)

Cross product.

template<typename T >
void numeric::cross_product ( xyzVector< T > const &  a,
xyzVector< T > const &  b,
xyzVector< T > &  c 
)

Cross product: Return via argument (slightly faster)

template<typename T >
T numeric::csc ( T const &  x)
inline

Cosecant.

Definition at line 54 of file trig.functions.hh.

References test.T007_TracerIO::T.

Referenced by numeric::BodyPosition< typename >::BodyPosition().

template<typename T >
T numeric::cube ( T const &  x)
inline

cube( x ) == x^3

Definition at line 314 of file numeric.functions.hh.

References x().

template<class RandomAccessIterator >
void numeric::cumulative ( RandomAccessIterator  first,
RandomAccessIterator  last 
)

Converts pdf to cdf.

Definition at line 46 of file prob_util.hh.

References normalize().

template<typename T >
xyzVector<T> numeric::deserialize ( utility::json_spirit::mArray  data)
inline
template<typename T >
void numeric::dihedral ( xyzVector< T > const &  p1,
xyzVector< T > const &  p2,
xyzVector< T > const &  p3,
xyzVector< T > const &  p4,
T &  angle 
)
inline

Dihedral (torsion) angle in degrees: angle value passed.

Note
This is a Rosetta++ compatibility version that operates in degrees

Definition at line 486 of file xyz.functions.hh.

References dihedral_radians(), and numeric::conversions::to_degrees().

Referenced by dihedral_double().

template<typename T >
T numeric::dihedral ( xyzVector< T > const &  p1,
xyzVector< T > const &  p2,
xyzVector< T > const &  p3,
xyzVector< T > const &  p4 
)
inline

Dihedral (torsion) angle in degrees: angle value returned.

Note
This is a Rosetta++ compatibility version that operates in degrees

Definition at line 513 of file xyz.functions.hh.

References numeric::conversions::degrees(), and dihedral_radians().

template<typename T >
void numeric::dihedral_degrees ( xyzVector< T > const &  p1,
xyzVector< T > const &  p2,
xyzVector< T > const &  p3,
xyzVector< T > const &  p4,
T &  angle 
)
inline

Dihedral (torsion) angle in degrees: angle value passed.

Definition at line 435 of file xyz.functions.hh.

References dihedral_radians(), and numeric::conversions::to_degrees().

Referenced by dihedral_degrees_double(), and apps::public1::scenarios::chemically_conjugated_docking::ubq_ras_rotation_angle().

template<typename T >
T numeric::dihedral_degrees ( xyzVector< T > const &  p1,
xyzVector< T > const &  p2,
xyzVector< T > const &  p3,
xyzVector< T > const &  p4 
)
inline

Dihedral (torsion) angle in degrees: angle value returned.

Definition at line 461 of file xyz.functions.hh.

References numeric::conversions::degrees(), and dihedral_radians().

void numeric::dihedral_degrees_double ( xyzVector< double > const &  p1,
xyzVector< double > const &  p2,
xyzVector< double > const &  p3,
xyzVector< double > const &  p4,
double angle 
)
inline

Definition at line 448 of file xyz.functions.hh.

References dihedral_degrees().

double numeric::dihedral_degrees_double ( xyzVector< double > const &  p1,
xyzVector< double > const &  p2,
xyzVector< double > const &  p3,
xyzVector< double > const &  p4 
)
inline

Definition at line 473 of file xyz.functions.hh.

References dihedral_degrees().

void numeric::dihedral_double ( xyzVector< double > const &  p1,
xyzVector< double > const &  p2,
xyzVector< double > const &  p3,
xyzVector< double > const &  p4,
double angle 
)
inline

Definition at line 499 of file xyz.functions.hh.

References dihedral().

double numeric::dihedral_double ( xyzVector< double > const &  p1,
xyzVector< double > const &  p2,
xyzVector< double > const &  p3,
xyzVector< double > const &  p4 
)
inline

Definition at line 525 of file xyz.functions.hh.

References dihedral().

template<typename T >
void numeric::dihedral_radians ( xyzVector< T > const &  p1,
xyzVector< T > const &  p2,
xyzVector< T > const &  p3,
xyzVector< T > const &  p4,
T &  angle 
)
inline

Dihedral (torsion) angle in radians: angle value passed.

Note
Given four positions in a chain ( p1, p2, p3, p4 ), calculates the dihedral (torsion) angle in radians between the vectors p2->p1 and p3->p4 while sighting along the axis defined by the vector p2->p3 (positive indicates right handed twist)
Angle returned is on [ -pi, pi ]
Degenerate cases are handled and assigned a zero angle but assumed rare (wrt performance tuning)
For a reference on the determination of the dihedral angle formula see: http://www.math.fsu.edu/~quine/IntroMathBio_04/torsion_pdb/torsion_pdb.pdf

Definition at line 358 of file xyz.functions.hh.

References test.T850_SubClassing::a, test.T850_SubClassing::b, cross(), dot(), test.T007_TracerIO::T, x(), and y().

Referenced by dihedral(), dihedral_degrees(), numeric::deriv::dihedral_deriv_second(), dihedral_radians(), dihedral_radians_double(), and minimize_test().

template<typename T >
T numeric::dihedral_radians ( xyzVector< T > const &  p1,
xyzVector< T > const &  p2,
xyzVector< T > const &  p3,
xyzVector< T > const &  p4 
)
inline

Dihedral (torsion) angle in radians: angle value returned.

Note
Given four positions in a chain ( p1, p2, p3, p4 ), calculates the dihedral (torsion) angle in radians between the vectors p2->p1 and p3->p4 while sighting along the axis defined by the vector p2->p3 (positive indicates right handed twist)
Angle returned is on [ -pi, pi ]
Degenerate cases are handled and assigned a zero angle but assumed rare (wrt performance tuning)
For a reference on the determination of the dihedral angle formula see: http://www.math.fsu.edu/~quine/IntroMathBio_04/torsion_pdb/torsion_pdb.pdf

Definition at line 410 of file xyz.functions.hh.

References Equations::angle(), dihedral_radians(), and test.T007_TracerIO::T.

void numeric::dihedral_radians_double ( xyzVector< double > const &  p1,
xyzVector< double > const &  p2,
xyzVector< double > const &  p3,
xyzVector< double > const &  p4,
double angle 
)
inline

Definition at line 389 of file xyz.functions.hh.

References dihedral_radians().

double numeric::dihedral_radians_double ( xyzVector< double > const &  p1,
xyzVector< double > const &  p2,
xyzVector< double > const &  p3,
xyzVector< double > const &  p4 
)
inline

Definition at line 423 of file xyz.functions.hh.

References dihedral_radians().

template<typename T >
T numeric::distance ( MathVector< T > const &  VECTOR_A,
MathVector< T > const &  VECTOR_B 
)
inline
template<typename T >
T numeric::distance ( xyzTriple< T > const &  a,
xyzTriple< T > const &  b 
)

Distance.

template<typename T >
T numeric::distance_squared ( xyzTriple< T > const &  a,
xyzTriple< T > const &  b 
)
template<typename T >
void numeric::divide ( xyzTriple< T > const &  v,
T const &  t,
xyzTriple< T > &  r 
)

Divide: xyzTriple / T.

template<typename T >
void numeric::divide ( xyzVector< T > const &  v,
T const &  t,
xyzVector< T > &  r 
)

Divide: xyzVector / T.

double numeric::do_abs ( double  a)

Definition at line 41 of file Calculator.cc.

References ObjexxFCL::abs().

Referenced by numeric::CalculatorParser::CalculatorParser().

void numeric::do_add_symbol ( CalculatorParser &  cp,
std::string  name,
double  value 
)
double numeric::do_cos ( double  a)

Definition at line 50 of file Calculator.cc.

Referenced by numeric::CalculatorParser::CalculatorParser().

double numeric::do_exp ( double  a)

Definition at line 43 of file Calculator.cc.

Referenced by numeric::CalculatorParser::CalculatorParser().

double numeric::do_ln ( double  a)

Definition at line 44 of file Calculator.cc.

References log().

Referenced by numeric::CalculatorParser::CalculatorParser().

double numeric::do_log ( double  a,
double  b 
)

Definition at line 47 of file Calculator.cc.

References log().

Referenced by numeric::CalculatorParser::CalculatorParser().

double numeric::do_log10 ( double  a)

Definition at line 45 of file Calculator.cc.

Referenced by numeric::CalculatorParser::CalculatorParser().

double numeric::do_log2 ( double  a)

Definition at line 46 of file Calculator.cc.

References log().

Referenced by numeric::CalculatorParser::CalculatorParser().

double numeric::do_max ( std::vector< double a)

Definition at line 52 of file Calculator.cc.

References max().

Referenced by numeric::CalculatorParser::CalculatorParser().

double numeric::do_mean ( std::vector< double a)

Definition at line 54 of file Calculator.cc.

References mean().

Referenced by numeric::CalculatorParser::CalculatorParser().

double numeric::do_median ( std::vector< double a)

Definition at line 55 of file Calculator.cc.

References median().

Referenced by numeric::CalculatorParser::CalculatorParser().

double numeric::do_min ( std::vector< double a)

Definition at line 53 of file Calculator.cc.

References min().

Referenced by numeric::CalculatorParser::CalculatorParser().

double numeric::do_pow ( double  a,
double  b 
)

Definition at line 42 of file Calculator.cc.

References ObjexxFCL::pow().

Referenced by numeric::CalculatorParser::CalculatorParser().

double numeric::do_sin ( double  a)

Definition at line 49 of file Calculator.cc.

Referenced by numeric::CalculatorParser::CalculatorParser().

double numeric::do_sqrt ( double  a)

Definition at line 48 of file Calculator.cc.

Referenced by numeric::CalculatorParser::CalculatorParser().

double numeric::do_tan ( double  a)

Definition at line 51 of file Calculator.cc.

Referenced by numeric::CalculatorParser::CalculatorParser().

template<typename T >
T numeric::dot ( Quaternion< T > const &  q1,
Quaternion< T > const &  q2 
)
template<typename T >
T numeric::dot ( xyzTriple< T > const &  a,
xyzTriple< T > const &  b 
)

Dot product.

template<typename T >
T numeric::dot ( xyzVector< T > const &  a,
xyzVector< T > const &  b 
)

Distance.

Distance squared Dot product

template<typename T >
T numeric::dot_product ( Quaternion< T > const &  q1,
Quaternion< T > const &  q2 
)

Dot product.

Referenced by closest_point_on_line().

template<typename T >
T numeric::dot_product ( xyzTriple< T > const &  a,
xyzTriple< T > const &  b 
)

Dot product.

template<typename T >
T numeric::dot_product ( xyzVector< T > const &  a,
xyzVector< T > const &  b 
)

Dot product.

template<typename T >
xyzVector< T > numeric::eigenvalue_jacobi ( xyzMatrix< T > const &  a,
T const &  tol 
)
inline
template<typename T >
xyzVector< T > numeric::eigenvector_jacobi ( xyzMatrix< T > const &  a,
T const &  tol,
xyzMatrix< T > &  J 
)
inline
template<typename T >
bool numeric::eq_tol ( T const &  x,
T const &  y,
T const &  r_tol,
T const &  a_tol 
)
inline

Equal within specified relative and absolute tolerances?

Definition at line 651 of file numeric.functions.hh.

References ObjexxFCL::abs(), max(), min(), and test.T007_TracerIO::T.

Referenced by numeric::interpolation::bilinearly_interpolated(), and numeric::interpolation::Histogram< typename, typename >::set_params().

bool numeric::equal_by_epsilon ( numeric::Real  value1,
numeric::Real  value2,
numeric::Real  epsilon 
)
inline

are two Real values are equal up to some epsilon

implemented only for Reals, to prevent unsigned hassle (Barak 30/6/2009)

Definition at line 61 of file util.hh.

template<typename T >
bool numeric::equal_length ( xyzTriple< T > const &  a,
xyzTriple< T > const &  b 
)

Equal length?

template<typename T >
bool numeric::equal_length ( xyzVector< T > const &  a,
xyzVector< T > const &  b 
)

Equal length?

template<typename T , class OutputIterator >
void numeric::expand_xforms ( OutputIterator  container,
xyzTransform< T > const &  G1,
xyzTransform< T > const &  G2,
xyzTransform< T > const &  ,
int  N = 5,
Real  r = 9e9,
xyzVector< T > const &  test_point = xyzVector<T>(Real(1.0),Real(3.0),Real(10.0)) 
)
template<typename T , class OutputIterator >
void numeric::expand_xforms ( OutputIterator  container,
xyzTransform< T > const &  G1,
xyzTransform< T > const &  G2,
int  N = 5,
Real  r = 9e9,
xyzVector< T > const &  test_point = xyzVector<T>(Real(1.0),Real(3.0),Real(10.0)) 
)

Definition at line 614 of file xyzTransform.hh.

References expand_xforms().

template<typename T >
utility::vector1< xyzVector<T> > numeric::FArray_to_vector_of_xyzvectors ( ObjexxFCL::FArray2D< T > const &  input)
inline
template<typename T >
numeric::xyzMatrix<T> numeric::FArray_to_xyzmatrix ( ObjexxFCL::FArray2D< T > const &  input)
inline
template<typename T >
T numeric::fast_remainder ( T const &  x,
T const &  y 
)
inline

Remainder of x with respect to division by y that is of smallest magnitude.

Note
Emulates the C99 remainder function except for rounding halfway values to even multiples
Returns zero if y is zero
Return value has magnitude <= | y / 2 |

Definition at line 613 of file numeric.functions.hh.

template<typename T >
T numeric::find_nearest_value ( typename utility::vector1< T > const &  input_list,
key,
platform::Size  min_index,
platform::Size  max_index 
)

recursive binary search that finds the value closest to key. Call find_nearest_value(input_list,value) instead. It's the driver function for this function. This fails miserably (and silently!) on a non-sorted vector, so don't do that!.

Definition at line 121 of file util.hh.

References ObjexxFCL::abs(), key, and test.T007_TracerIO::T.

template<typename T >
T numeric::find_nearest_value ( typename utility::vector1< T > const &  input_list,
key 
)

given a vector and an input value, return the value in the vector that is closest to the input This is a wrapper for find_nearest_value(input_list,key,min,max) and insures that you're sorted.

Definition at line 149 of file util.hh.

References key.

template<typename T >
xyzVector< T > numeric::first_principal_component ( utility::vector1< xyzVector< T > > const &  coords)
inline

return the first principal component of the given set of points

Definition at line 40 of file PCA.hh.

References numeric::xyzMatrix< typename >::col(), and principal_components().

template<typename T >
T numeric::gcd ( T const &  m,
T const &  n 
)
inline

Greatest common divisor.

Definition at line 634 of file numeric.functions.hh.

References max(), min(), mod(), and test.T007_TracerIO::T.

template<typename T >
bool numeric::ge_tol ( T const &  x,
T const &  y,
T const &  r_tol,
T const &  a_tol 
)
inline

Greater than or equal within specified relative and absolute tolerances?

Definition at line 690 of file numeric.functions.hh.

References ObjexxFCL::abs(), max(), min(), and test.T007_TracerIO::T.

template<class T >
void numeric::get_cluster_data ( utility::vector1< T > &  data_in,
ClusteringTreeNodeOP  cluster,
utility::vector1< T > &  data_out 
)

Definition at line 48 of file agglomerative_hierarchical_clustering.hh.

template<typename T >
bool numeric::gt_tol ( T const &  x,
T const &  y,
T const &  r_tol,
T const &  a_tol 
)
inline

Greater than within specified relative and absolute tolerances?

Definition at line 703 of file numeric.functions.hh.

References ObjexxFCL::abs(), max(), min(), and test.T007_TracerIO::T.

template<typename T >
platform::Size numeric::hash_value ( xyzVector< T > const &  v)

convert an HSV color to RGB

Definition at line 79 of file color_util.cc.

numeric::xyzVector< platform::Real > numeric::hsv_to_rgb ( numeric::xyzVector< platform::Real hsv_triplet)
template<typename T >
bool numeric::in_sin_cos_range ( T const &  x,
T const &  tol = T( .001 ) 
)
inline

Is a sine or cosine value within a specified tolerance of the valid [-1,1] range?

Definition at line 74 of file trig.functions.hh.

References test.T007_TracerIO::T, and loops_kic::tol.

template<typename T >
T numeric::inner_product ( xyzTriple< T > const &  a,
xyzTriple< T > const &  b 
)

Inner product ( == dot product )

Referenced by numeric::MathVector< Real >::square_norm().

template<typename T >
T numeric::inner_product ( xyzVector< T > const &  a,
xyzVector< T > const &  b 
)

Inner product ( == dot product )

template<typename T >
xyzVector< T > & numeric::inplace_product ( xyzMatrix< T > const &  m,
xyzVector< T > &  v 
)
inline
template<typename T >
xyzVector< T > & numeric::inplace_transpose_product ( xyzMatrix< T > const &  m,
xyzVector< T > &  v 
)
inline
template<typename T >
xyzMatrix< T > numeric::inverse ( xyzMatrix< T > const &  a)
inline
bool numeric::is_a_finitenumber ( double  s,
double  a,
double  b 
)
inline

Definition at line 716 of file numeric.functions.hh.

template<typename T >
bool numeric::isinf ( value)
inline

Definition at line 52 of file util.hh.

Referenced by compare_times::compare_times(), utility::is_inf(), and utility::is_undefined().

template<typename T >
bool numeric::isnan ( value)
inline

portable check to see if a value is NaN.

Definition at line 47 of file util.hh.

References value.

Referenced by compare_times::compare_times(), utility::is_nan(), and utility::is_undefined().

template<typename T >
void numeric::jacobi_rotation ( xyzMatrix< T > const &  m,
int const  i,
int const  j,
xyzMatrix< T > &  r 
)
inline

Jacobi rotation.

Note
Compute the orthogonal transformation used to zero out a pair of off-diagonal elements

Definition at line 1050 of file xyz.functions.hh.

References ObjexxFCL::abs(), app.pyrosetta_toolkit.modules.SQLPDB::s, test.T007_TracerIO::T, and numeric::xyzMatrix< typename >::to_identity().

Referenced by eigenvalue_jacobi(), eigenvector_jacobi(), and instantiate_numeric_functions().

template<typename T >
bool numeric::le_tol ( T const &  x,
T const &  y,
T const &  r_tol,
T const &  a_tol 
)
inline

Less than or equal within specified relative and absolute tolerances?

Definition at line 677 of file numeric.functions.hh.

References ObjexxFCL::abs(), max(), min(), and test.T007_TracerIO::T.

template<class Value >
double numeric::linear_interpolate ( Value  start,
Value  stop,
unsigned  curr_stage,
unsigned  num_stages 
)

Linearly interpolates a quantity from start to stop over (num_stages + 1) stages.

Definition at line 20 of file interpolate.hh.

References test.Workshop5test::start.

double numeric::log ( double  x,
double  base 
)
inline
template<typename T >
bool numeric::lt_tol ( T const &  x,
T const &  y,
T const &  r_tol,
T const &  a_tol 
)
inline

Less than within specified relative and absolute tolerances?

Definition at line 664 of file numeric.functions.hh.

References ObjexxFCL::abs(), max(), min(), and test.T007_TracerIO::T.

template<typename T >
MathVector< T > numeric::MakeVector ( T const &  X)
template<typename T >
MathVector< T > numeric::MakeVector ( T const &  X,
T const &  Y 
)
inline
Returns
construct MathVectors from two elements

Definition at line 101 of file MathVector_operations.hh.

References ObjexxFCL::format::X().

template<typename T >
MathVector< T > numeric::MakeVector ( T const &  X,
T const &  Y,
T const &  Z 
)
inline
Returns
construct MathVectors from three elements

Definition at line 112 of file MathVector_operations.hh.

References ObjexxFCL::format::X().

template<typename T >
T numeric::max ( utility::vector1< T > const &  values)

Definition at line 82 of file util.hh.

References test.T200_Scoring::ii, max(), and test.T007_TracerIO::T.

short int numeric::max ( short int const  a,
short int const  b 
)
inline
int numeric::max ( int const  a,
int const  b 
)
inline

max( int, int )

Definition at line 184 of file numeric.functions.hh.

long int numeric::max ( long int const  a,
long int const  b 
)
inline

max( long int, long int )

Definition at line 193 of file numeric.functions.hh.

unsigned short int numeric::max ( unsigned short int const  a,
unsigned short int const  b 
)
inline
unsigned int numeric::max ( unsigned int const  a,
unsigned int const  b 
)
inline
unsigned long int numeric::max ( unsigned long int const  a,
unsigned long int const  b 
)
inline
float numeric::max ( float const  a,
float const  b 
)
inline

max( float, float )

Definition at line 229 of file numeric.functions.hh.

double numeric::max ( double const  a,
double const  b 
)
inline

max( double, double )

Definition at line 238 of file numeric.functions.hh.

long double numeric::max ( long double const  a,
long double const  b 
)
inline
template<typename T >
T const& numeric::max ( T const &  a,
T const &  b,
T const &  c 
)
inline

max( a, b, c )

Definition at line 261 of file numeric.functions.hh.

template<typename T >
T const& numeric::max ( T const &  a,
T const &  b,
T const &  c,
T const &  d 
)
inline

max( a, b, c, d )

Definition at line 271 of file numeric.functions.hh.

References max().

template<typename T >
T const& numeric::max ( T const &  a,
T const &  b,
T const &  c,
T const &  d,
T const &  e 
)
inline

max( a, b, c, d, e )

Definition at line 281 of file numeric.functions.hh.

References max(), and max().

template<typename T >
T const& numeric::max ( T const &  a,
T const &  b,
T const &  c,
T const &  d,
T const &  e,
T const &  f 
)
inline

max( a, b, c, d, e, f )

Definition at line 291 of file numeric.functions.hh.

References max(), and max().

template<typename T >
xyzTriple< T > numeric::max ( xyzTriple< T > const &  a,
xyzTriple< T > const &  b 
)

xyzTriple with max coordinates of two xyzTriples

template<typename T >
xyzVector< T > numeric::max ( xyzVector< T > const &  a,
xyzVector< T > const &  b 
)

xyzVector with max coordinates of two xyzVectors

numeric::Real numeric::mean ( utility::vector1< numeric::Real > const &  values)

Definition at line 37 of file util.cc.

References end.

Referenced by do_mean().

numeric::Real numeric::median ( utility::vector1< numeric::Real > const &  values)

Returns the median from a vector1 of Real values.

Definition at line 21 of file util.cc.

Referenced by do_median().

template<typename T >
xyzTriple< T > numeric::midpoint ( xyzTriple< T > const &  a,
xyzTriple< T > const &  b 
)
template<typename T >
void numeric::midpoint ( xyzTriple< T > const &  a,
xyzTriple< T > const &  b,
xyzTriple< T > &  m 
)

Midpoint of 2 xyzTriples: Return via argument (slightly faster)

template<typename T >
xyzVector< T > numeric::midpoint ( xyzVector< T > const &  a,
xyzVector< T > const &  b 
)

Midpoint of 2 xyzVectors.

template<typename T >
void numeric::midpoint ( xyzVector< T > const &  a,
xyzVector< T > const &  b,
xyzVector< T > &  m 
)

Midpoint of 2 xyzVectors: Return via argument (slightly faster)

short int numeric::min ( short int const  a,
short int const  b 
)
inline
int numeric::min ( int const  a,
int const  b 
)
inline

min( int, int )

Definition at line 56 of file numeric.functions.hh.

long int numeric::min ( long int const  a,
long int const  b 
)
inline

min( long int, long int )

Definition at line 65 of file numeric.functions.hh.

unsigned short int numeric::min ( unsigned short int const  a,
unsigned short int const  b 
)
inline
unsigned int numeric::min ( unsigned int const  a,
unsigned int const  b 
)
inline
template<typename T >
T numeric::min ( utility::vector1< T > const &  values)

Definition at line 92 of file util.hh.

References test.T200_Scoring::ii, min(), and test.T007_TracerIO::T.

unsigned long int numeric::min ( unsigned long int const  a,
unsigned long int const  b 
)
inline
float numeric::min ( float const  a,
float const  b 
)
inline

min( float, float )

Definition at line 101 of file numeric.functions.hh.

double numeric::min ( double const  a,
double const  b 
)
inline

min( double, double )

Definition at line 110 of file numeric.functions.hh.

long double numeric::min ( long double const  a,
long double const  b 
)
inline
template<typename T >
T const& numeric::min ( T const &  a,
T const &  b,
T const &  c 
)
inline

min( a, b, c )

Definition at line 133 of file numeric.functions.hh.

template<typename T >
T const& numeric::min ( T const &  a,
T const &  b,
T const &  c,
T const &  d 
)
inline

min( a, b, c, d )

Definition at line 143 of file numeric.functions.hh.

References min().

template<typename T >
T const& numeric::min ( T const &  a,
T const &  b,
T const &  c,
T const &  d,
T const &  e 
)
inline

min( a, b, c, d, e )

Definition at line 153 of file numeric.functions.hh.

References min(), and min().

template<typename T >
T const& numeric::min ( T const &  a,
T const &  b,
T const &  c,
T const &  d,
T const &  e,
T const &  f 
)
inline

min( a, b, c, d, e, f )

Definition at line 163 of file numeric.functions.hh.

References min(), and min().

template<typename T >
xyzTriple< T > numeric::min ( xyzTriple< T > const &  a,
xyzTriple< T > const &  b 
)

xyzTriple with min coordinates of two xyzTriples

template<typename T >
xyzVector< T > numeric::min ( xyzVector< T > const &  a,
xyzVector< T > const &  b 
)

xyzVector with min coordinates of two xyzVectors

template<typename T >
T numeric::mod ( T const &  x,
T const &  y 
)
inline

x(mod y) computational modulo returning magnitude < | y | and sign of x

Note
When used with negative integer arguments this assumes integer division rounds towards zero (de facto and future official standard)

Definition at line 464 of file numeric.functions.hh.

Referenced by gcd(), numeric::RemainderSelector< T, bool >::remainder(), and numeric::RemainderSelector< T, true >::remainder().

template<typename T >
T numeric::modulo ( T const &  x,
T const &  y 
)
inline
template<typename T >
void numeric::multiply ( xyzTriple< T > const &  v,
T const &  t,
xyzTriple< T > &  r 
)

Multiply: xyzTriple * T.

template<typename T >
void numeric::multiply ( T const &  t,
xyzTriple< T > const &  v,
xyzTriple< T > &  r 
)

Multiply: T * xyzTriple.

template<typename T >
void numeric::multiply ( xyzVector< T > const &  v,
T const &  t,
xyzVector< T > &  r 
)

Multiply: xyzVector * T.

template<typename T >
void numeric::multiply ( T const &  t,
xyzVector< T > const &  v,
xyzVector< T > &  r 
)

Multiply: T * xyzVector.

template<typename R , typename T >
R numeric::nearest ( T const &  x)
inline

nearest< R >( x ): Nearest R

Definition at line 382 of file numeric.functions.hh.

Referenced by numeric::kdtree::nearest_neighbors().

template<typename T >
T numeric::nearest_angle ( T const &  angle,
T const &  base_angle 
)
inline

Nearest periodic value of angle to a base angle in radians.

Definition at line 95 of file angle.functions.hh.

References nearest_ssize(), and numeric::NumericTraits< T >::pi_2().

template<typename T >
T numeric::nearest_angle_degrees ( T const &  angle,
T const &  base_angle 
)
inline

Nearest periodic value of angle to a base angle in degrees.

Definition at line 115 of file angle.functions.hh.

References nearest_ssize(), and test.T007_TracerIO::T.

template<typename T >
T numeric::nearest_angle_radians ( T const &  angle,
T const &  base_angle 
)
inline

Nearest periodic value of angle to a base angle in radians.

Definition at line 105 of file angle.functions.hh.

References nearest_ssize(), and numeric::NumericTraits< T >::pi_2().

template<typename T >
int numeric::nearest_int ( T const &  x)
inline

nearest_int( x ): Nearest int

Definition at line 412 of file numeric.functions.hh.

References sign(), and test.T007_TracerIO::T.

template<typename T >
std::size_t numeric::nearest_size ( T const &  x)
inline

nearest_size( x ): Nearest std::size_t

Definition at line 392 of file numeric.functions.hh.

References sign(), and test.T007_TracerIO::T.

template<typename T >
SSize numeric::nearest_ssize ( T const &  x)
inline
template<typename T >
int numeric::nint ( T const &  x)
inline

nint( x ): Nearest int

Definition at line 422 of file numeric.functions.hh.

References sign(), and test.T007_TracerIO::T.

template<typename T >
T numeric::nonnegative_principal_angle ( T const &  angle)
inline

Positive principal value of angle in radians on [ 0, 2*pi )

Definition at line 65 of file angle.functions.hh.

References modulo().

template<typename T >
T numeric::nonnegative_principal_angle_degrees ( T const &  angle)
inline

Positive principal value of angle in degrees on [ 0, 360 )

Definition at line 85 of file angle.functions.hh.

References modulo(), and test.T007_TracerIO::T.

template<typename T >
T numeric::nonnegative_principal_angle_radians ( T const &  angle)
inline

Positive principal value of angle in radians on [ 0, 2*pi )

Definition at line 75 of file angle.functions.hh.

References modulo().

template<class InputIterator >
void numeric::normalize ( InputIterator  first,
InputIterator  last 
)

Normalizes elements on the range [first, last)

Definition at line 37 of file prob_util.hh.

References assign_charges::first, and sum().

Referenced by cumulative(), and product().

template<typename T >
bool numeric::not_equal_length ( xyzTriple< T > const &  a,
xyzTriple< T > const &  b 
)

Not equal length?

template<typename T >
bool numeric::not_equal_length ( xyzVector< T > const &  a,
xyzVector< T > const &  b 
)

Not equal length?

template<typename T >
bool numeric::operator!= ( MathVector< T > const &  VECTOR_A,
MathVector< T > const &  VECTOR_B 
)
inline
Returns
operator != (Comparison) MathVectors

Definition at line 161 of file MathVector_operations.hh.

template<typename T >
bool numeric::operator!= ( MathVector< T > const &  VECTOR,
T const &  X 
)
inline
Returns
operator MathVector != X (Comparison with T value)

Definition at line 178 of file MathVector_operations.hh.

References ObjexxFCL::format::X().

template<typename T >
bool numeric::operator!= ( T const &  X,
MathVector< T > const &  VECTOR 
)
inline
Returns
operator X != MathVector(Comparison with T value)

Definition at line 192 of file MathVector_operations.hh.

References ObjexxFCL::format::X().

template<typename T >
bool numeric::operator!= ( const MathMatrix< T > &  MATRIX_LHS,
const MathMatrix< T > &  MATRIX_RHS 
)
inline

compare to matrices for inequality

Parameters
MATRIX_LHSlhs matrix
MATRIX_RHSrhs matrix
Returns
!( MATRIX_LHS == MATRIX_RHS)

Definition at line 197 of file MathMatrix_operations.hh.

template<typename T >
bool numeric::operator!= ( const MathMatrix< T > &  MATRIX_LHS,
const T &  VALUE_RHS 
)
inline

compare if all items in matrix are not equal to a given VALUE

Parameters
MATRIX_LHSmatrix with values
VALUE_RHSvalue that is compared against
Returns
false if matrix is empty are all elements in matrix are equal to given VALUE

Definition at line 234 of file MathMatrix_operations.hh.

References numeric::MathMatrix< T >::begin(), and numeric::MathMatrix< T >::end().

template<typename T >
bool numeric::operator!= ( const T &  VALUE_LHS,
const MathMatrix< T > &  MATRIX_RHS 
)
inline

compare if all items in matrix are not equal to a given VALUE

Parameters
VALUE_LHSvalue that is compared against
MATRIX_RHSmatrix with values
Returns
false if matrix is empty are all elements in matrix are equal to given VALUE

Definition at line 249 of file MathMatrix_operations.hh.

template<typename T >
bool numeric::operator!= ( BodyPosition< T > const &  p1,
BodyPosition< T > const &  p2 
)
template<typename T >
bool numeric::operator!= ( Quaternion< T > const &  q1,
Quaternion< T > const &  q2 
)
template<typename T >
bool numeric::operator!= ( xyzMatrix< T > const &  a,
xyzMatrix< T > const &  b 
)
template<typename T >
bool numeric::operator!= ( xyzMatrix< T > const &  m,
T const &  t 
)

xyzMatrix != T

template<typename T >
bool numeric::operator!= ( xyzTriple< T > const &  a,
xyzTriple< T > const &  b 
)
template<typename T >
bool numeric::operator!= ( T const &  t,
xyzMatrix< T > const &  m 
)

T != xyzMatrix.

template<typename T >
bool numeric::operator!= ( xyzTriple< T > const &  v,
T const &  t 
)

xyzTriple != T

template<typename T >
bool numeric::operator!= ( T const &  t,
xyzTriple< T > const &  v 
)

T != xyzTriple.

template<typename T >
bool numeric::operator!= ( xyzVector< T > const &  a,
xyzVector< T > const &  b 
)
template<typename T >
bool numeric::operator!= ( xyzVector< T > const &  v,
T const &  t 
)

xyzVector != T

template<typename T >
bool numeric::operator!= ( T const &  t,
xyzVector< T > const &  v 
)

T != xyzVector.

template<typename T >
xyzVector< T > numeric::operator* ( xyzMatrix< T > const &  m,
xyzVector< T > const &  v 
)
inline
template<typename T >
T numeric::operator* ( MathVector< T > const &  VECTOR_A,
MathVector< T > const &  VECTOR_B 
)
inline
template<typename T >
MathVector< T > numeric::operator* ( T const &  X,
MathVector< T > const &  VECTOR 
)
inline
Returns
operator MathVector * MathVector

Definition at line 256 of file MathVector_operations.hh.

template<typename T >
MathVector< T > numeric::operator* ( MathVector< T > const &  VECTOR,
T const &  X 
)
inline
Returns
operator MathVector * MathVector

Definition at line 263 of file MathVector_operations.hh.

template<typename T >
MathMatrix< T> numeric::operator* ( const MathMatrix< T > &  MATRIX_LHS,
const MathMatrix< T > &  MATRIX_RHS 
)
inline

multiply two matrixs of equal size by building the inner product yielding the scalar product

Parameters
MATRIX_LHSlhs matrix
MATRIX_RHSrhs matrix
Returns
scalar representing root of inner product of the two ranges

Definition at line 294 of file MathMatrix_operations.hh.

References numeric::MathMatrix< T >::get_number_cols(), and numeric::MathMatrix< T >::get_number_rows().

template<typename T >
MathMatrix< T> numeric::operator* ( const T &  SCALAR_LHS,
const MathMatrix< T > &  MATRIX_RHS 
)
inline

multiply scalar with matrix

Parameters
SCALAR_LHSlhs value to be multiplied
MATRIX_RHSrhs matrix
Returns
matrix that has the values multiplied with the scalar

Definition at line 363 of file MathMatrix_operations.hh.

template<typename T >
MathMatrix< T> numeric::operator* ( const MathMatrix< T > &  MATRIX_LHS,
const T &  SCALAR_RHS 
)
inline

multiply matrix with scalar

Parameters
MATRIX_LHSlhs matrix
SCALAR_RHSrhs value to be multiplied
Returns
matrix that has the values multiplied with the scalar

Definition at line 375 of file MathMatrix_operations.hh.

template<typename T >
MathVector< T> numeric::operator* ( const MathMatrix< T > &  MATRIX_LHS,
const MathVector< T > &  VECTOR_RHS 
)
inline

multiply matrix with vector

Parameters
MATRIX_LHSlhs matrix
VECTORvector to be multiplied
Returns
resulting vector

Definition at line 387 of file MathMatrix_operations.hh.

References numeric::MathMatrix< T >::get_number_cols(), and numeric::MathMatrix< T >::get_number_rows().

template<typename T >
Quaternion< T > numeric::operator* ( Quaternion< T > const &  q2,
Quaternion< T > const &  q1 
)
template<typename T >
xyzTriple< T > numeric::operator* ( xyzTriple< T > const &  v,
T const &  t 
)

xyzTriple * T

template<typename T >
xyzTriple< T > numeric::operator* ( T const &  t,
xyzTriple< T > const &  v 
)

T * xyzTriple.

template<typename T >
xyzVector< T > numeric::operator* ( xyzVector< T > const &  v,
T const &  t 
)

xyzVector * T

template<typename T >
xyzMatrix< T > numeric::operator* ( xyzMatrix< T > const &  a,
xyzMatrix< T > const &  b 
)
template<typename T >
xyzVector< T > numeric::operator* ( T const &  t,
xyzVector< T > const &  v 
)

T * xyzVector.

template<typename T >
xyzMatrix< T > numeric::operator* ( xyzMatrix< T > const &  m,
T const &  t 
)

xyzMatrix * T

template<typename T >
xyzMatrix< T > numeric::operator* ( T const &  t,
xyzMatrix< T > const &  m 
)

T * xyzMatrix.

template<typename T >
MathMatrix< T>& numeric::operator*= ( MathMatrix< T > &  MATRIX_LHS,
const T &  SCALAR 
)
inline

multiply matrix with scalar

Parameters
MATRIX_LHSmatrix to multiply to
SCALARscalar to be multiplied
Returns
the changed lhs matrix

Definition at line 140 of file MathMatrix_operations.hh.

References numeric::MathMatrix< T >::begin(), and numeric::MathMatrix< T >::end().

template<typename T >
MathVector< T > numeric::operator+ ( MathVector< T > const &  VECTOR)
inline
Returns
operator +MathVectors

Definition at line 136 of file MathVector_operations.hh.

template<typename T >
MathVector< T > numeric::operator+ ( MathVector< T > const &  VECTOR_A,
MathVector< T > const &  VECTOR_B 
)
inline
Returns
operator MathVector + MathVector

Definition at line 199 of file MathVector_operations.hh.

template<typename T >
MathVector< T > numeric::operator+ ( MathVector< T > const &  VECTOR,
T const &  X 
)
inline
Returns
operator MathVector + MathVector

Definition at line 213 of file MathVector_operations.hh.

template<typename T >
MathVector< T > numeric::operator+ ( T const &  X,
MathVector< T > const &  VECTOR 
)
inline
Returns
operator MathVector + MathVector

Definition at line 227 of file MathVector_operations.hh.

template<typename T >
MathMatrix< T> numeric::operator+ ( const MathMatrix< T > &  MATRIX_LHS,
const MathMatrix< T > &  MATRIX_RHS 
)
inline

sum two matrixs of equal size

Parameters
MATRIX_LHSlhs matrix
MATRIX_RHSrhs matrix
Returns
matrix with all individual summed elements of lhs and rhs matrix

Definition at line 265 of file MathMatrix_operations.hh.

template<typename T >
MathMatrix< T> numeric::operator+ ( const MathMatrix< T > &  MATRIX_LHS,
const T &  VALUE_RHS 
)
inline

add value to matrix

Parameters
MATRIX_LHSlhs matrix
VALUE_RHSrhs value to be added
Returns
matrix that has the value added to each value of the lhs given matrix

Definition at line 315 of file MathMatrix_operations.hh.

template<typename T >
MathMatrix< T> numeric::operator+ ( const T &  VALUE_LHS,
const MathMatrix< T > &  MATRIX_RHS 
)
inline

add matrix to value

Parameters
VALUE_LHSlhs value to be added
MATRIX_RHSrhs matrix
Returns
matrix that has the value added to each value of the lhs given matrix

Definition at line 327 of file MathMatrix_operations.hh.

template<typename T >
xyzTriple< T > numeric::operator+ ( xyzTriple< T > const &  a,
xyzTriple< T > const &  b 
)
template<typename T >
xyzTriple< T > numeric::operator+ ( xyzTriple< T > const &  v,
T const &  t 
)

xyzTriple + T

template<typename T >
xyzTriple< T > numeric::operator+ ( T const &  t,
xyzTriple< T > const &  v 
)

T + xyzTriple.

template<typename T >
xyzVector< T > numeric::operator+ ( xyzVector< T > const &  a,
xyzVector< T > const &  b 
)
template<typename T >
xyzMatrix< T > numeric::operator+ ( xyzMatrix< T > const &  a,
xyzMatrix< T > const &  b 
)
template<typename T >
xyzVector< T > numeric::operator+ ( xyzVector< T > const &  v,
T const &  t 
)

xyzVector + T

template<typename T >
xyzMatrix< T > numeric::operator+ ( xyzMatrix< T > const &  m,
T const &  t 
)

xyzMatrix + T

template<typename T >
xyzVector< T > numeric::operator+ ( T const &  t,
xyzVector< T > const &  v 
)

T + xyzVector.

template<typename T >
xyzMatrix< T > numeric::operator+ ( T const &  t,
xyzMatrix< T > const &  m 
)

T + xyzMatrix.

template<typename T >
MathMatrix< T>& numeric::operator+= ( MathMatrix< T > &  MATRIX_LHS,
const MathMatrix< T > &  MATRIX_RHS 
)
inline

add one matrix to another

Parameters
MATRIX_LHSmatrix to add to
MATRIX_RHSmatrix to add
Returns
the changed lhs matrix

Definition at line 51 of file MathMatrix_operations.hh.

References numeric::MathMatrix< T >::begin(), and numeric::MathMatrix< T >::end().

template<typename T >
MathMatrix< T>& numeric::operator+= ( MathMatrix< T > &  MATRIX_LHS,
const T &  VALUE 
)
inline

add scalar to matrix

Parameters
MATRIX_LHSmatrix to add to
VALUEscalar to be added
Returns
the changed lhs matrix

Definition at line 104 of file MathMatrix_operations.hh.

References numeric::MathMatrix< T >::begin(), and numeric::MathMatrix< T >::end().

template<typename T >
MathVector< T > numeric::operator- ( MathVector< T > const &  VECTOR)
inline
Returns
operator -MathVectors

Definition at line 129 of file MathVector_operations.hh.

References test.T007_TracerIO::T.

template<typename T >
MathVector< T > numeric::operator- ( MathVector< T > const &  VECTOR_A,
MathVector< T > const &  VECTOR_B 
)
inline
Returns
operator MathVector - MathVector

Definition at line 206 of file MathVector_operations.hh.

template<typename T >
MathVector< T > numeric::operator- ( MathVector< T > const &  VECTOR,
T const &  X 
)
inline
Returns
operator MathVector - MathVector

Definition at line 220 of file MathVector_operations.hh.

template<typename T >
MathVector< T > numeric::operator- ( T const &  X,
MathVector< T > const &  VECTOR 
)
inline
Returns
operator MathVector - MathVector

Definition at line 234 of file MathVector_operations.hh.

template<typename T >
MathMatrix< T> numeric::operator- ( const MathMatrix< T > &  MATRIX_LHS,
const MathMatrix< T > &  MATRIX_RHS 
)
inline

subtract two matrixs of equal size

Parameters
MATRIX_LHSlhs matrix
MATRIX_RHSrhs matrix
Returns
matrix with all individual subtracted elements of rhs from lhs matrix

Definition at line 279 of file MathMatrix_operations.hh.

template<typename T >
MathMatrix< T> numeric::operator- ( const MathMatrix< T > &  MATRIX_LHS,
const T &  VALUE_RHS 
)
inline

subtract value from matrix

Parameters
MATRIX_LHSlhs matrix
VALUE_RHSrhs value to be subtracted
Returns
matrix that has the value subtracted from each value of the lhs given matrix

Definition at line 339 of file MathMatrix_operations.hh.

template<typename T >
MathMatrix< T> numeric::operator- ( const T &  VALUE_LHS,
const MathMatrix< T > &  MATRIX_RHS 
)
inline

subtract matrix from value

Parameters
VALUE_LHSrhs value to be subtracted
MATRIX_RHSlhs matrix
Returns
matrix that has the values in the matrix subtracted from the value

Definition at line 351 of file MathMatrix_operations.hh.

References numeric::MathMatrix< T >::size().

template<typename T >
xyzTriple< T > numeric::operator- ( xyzTriple< T > const &  a,
xyzTriple< T > const &  b 
)
template<typename T >
xyzTriple< T > numeric::operator- ( xyzTriple< T > const &  v,
T const &  t 
)

xyzTriple - T

template<typename T >
xyzTriple< T > numeric::operator- ( T const &  t,
xyzTriple< T > const &  v 
)

T - xyzTriple.

template<typename T >
xyzVector< T > numeric::operator- ( xyzVector< T > const &  a,
xyzVector< T > const &  b 
)
template<typename T >
xyzMatrix< T > numeric::operator- ( xyzMatrix< T > const &  a,
xyzMatrix< T > const &  b 
)
template<typename T >
xyzVector< T > numeric::operator- ( xyzVector< T > const &  v,
T const &  t 
)

xyzVector - T

template<typename T >
xyzMatrix< T > numeric::operator- ( xyzMatrix< T > const &  m,
T const &  t 
)

xyzMatrix - T

template<typename T >
xyzVector< T > numeric::operator- ( T const &  t,
xyzVector< T > const &  v 
)

T - xyzVector.

template<typename T >
xyzMatrix< T > numeric::operator- ( T const &  t,
xyzMatrix< T > const &  m 
)

T - xyzMatrix.

template<typename T >
MathMatrix< T>& numeric::operator-= ( MathMatrix< T > &  MATRIX_LHS,
const MathMatrix< T > &  MATRIX_RHS 
)
inline

subtract one matrix from another

Parameters
MATRIX_LHSmatrix to subtract from
MATRIX_RHSmatrix to subtract
Returns
the changed lhs matrix

Definition at line 71 of file MathMatrix_operations.hh.

References numeric::MathMatrix< T >::begin(), and numeric::MathMatrix< T >::end().

template<typename T >
MathMatrix< T>& numeric::operator-= ( MathMatrix< T > &  MATRIX_LHS,
const T &  VALUE 
)
inline

subtract scalar from matrix

Parameters
MATRIX_LHSmatrix to subtract from
VALUEscalar to be added
Returns
the changed lhs matrix

Definition at line 122 of file MathMatrix_operations.hh.

References numeric::MathMatrix< T >::begin(), and numeric::MathMatrix< T >::end().

template<typename T >
MathVector< T > numeric::operator/ ( MathVector< T > const &  VECTOR,
T const &  X 
)
inline
Returns
operator MathVector / MathVector

Definition at line 270 of file MathVector_operations.hh.

template<typename T >
MathVector< T > numeric::operator/ ( MathVector< T > const &  VECTOR_A,
MathVector< T > const &  VECTOR_B 
)
inline
Returns
operator MathVector / MathVector ; divides each element by according argument element

Definition at line 277 of file MathVector_operations.hh.

template<typename T >
MathVector< T > numeric::operator/ ( T const &  X,
MathVector< T > const &  VECTOR 
)
inline
Returns
operator MathVector / MathVector = Value * Inverse( MathVector)

Definition at line 284 of file MathVector_operations.hh.

template<typename T >
MathMatrix< T> numeric::operator/ ( const MathMatrix< T > &  MATRIX_LHS,
const T &  SCALAR_RHS 
)
inline

divide matrix with scalar

Parameters
MATRIX_LHSlhs matrix
SCALAR_RHSrhs value to be divided by
Returns
matrix that has the values divided by the scalar

Definition at line 405 of file MathMatrix_operations.hh.

template<typename T >
MathMatrix< T> numeric::operator/ ( const T &  SCALAR_LHS,
const MathMatrix< T > &  MATRIX_RHS 
)
inline

divide scalar by matrix

Parameters
SCALAR_LHSlhs value to be divided
MATRIX_RHSrhs matrix to be used to divide the scalar
Returns
matrix that has the values of scalar divided by each according value of the matrix

Definition at line 417 of file MathMatrix_operations.hh.

References numeric::MathMatrix< T >::size().

template<typename T >
xyzTriple< T > numeric::operator/ ( xyzTriple< T > const &  v,
T const &  t 
)

xyzTriple / T

template<typename T >
xyzVector< T > numeric::operator/ ( xyzVector< T > const &  v,
T const &  t 
)

xyzVector / T

template<typename T >
xyzMatrix< T > numeric::operator/ ( xyzMatrix< T > const &  m,
T const &  t 
)

xyzMatrix / T

template<typename T >
MathMatrix< T>& numeric::operator/= ( MathMatrix< T > &  MATRIX_LHS,
const MathMatrix< T > &   
)
inline

divide one matrix by another

Parameters
MATRIX_LHSmatrix to divided
MATRIX_RHSmatrix to divide by
Returns
the changed lhs matrix

Definition at line 92 of file MathMatrix_operations.hh.

template<typename T >
MathMatrix< T>& numeric::operator/= ( MathMatrix< T > &  MATRIX_LHS,
const T &  SCALAR 
)
inline

divide matrix by scalar

Parameters
MATRIX_LHSmatrix to divide
SCALARscalar to divide by
Returns
the changed lhs matrix

Definition at line 158 of file MathMatrix_operations.hh.

References numeric::MathMatrix< T >::begin(), and numeric::MathMatrix< T >::end().

template<typename T >
bool numeric::operator< ( xyzMatrix< T > const &  a,
xyzMatrix< T > const &  b 
)
template<typename T >
bool numeric::operator< ( xyzMatrix< T > const &  m,
T const &  t 
)

xyzMatrix < T

template<typename T >
bool numeric::operator< ( xyzTriple< T > const &  a,
xyzTriple< T > const &  b 
)
template<typename T >
bool numeric::operator< ( T const &  t,
xyzMatrix< T > const &  m 
)

T < xyzMatrix.

template<typename T >
bool numeric::operator< ( xyzTriple< T > const &  v,
T const &  t 
)

xyzTriple < T

template<typename T >
bool numeric::operator< ( T const &  t,
xyzTriple< T > const &  v 
)

T < xyzTriple.

template<typename T >
bool numeric::operator< ( xyzVector< T > const &  a,
xyzVector< T > const &  b 
)
template<typename T >
bool numeric::operator< ( xyzVector< T > const &  v,
T const &  t 
)

xyzVector < T

template<typename T >
bool numeric::operator< ( T const &  t,
xyzVector< T > const &  v 
)

T < xyzVector.

std::ostream & numeric::operator<< ( std::ostream &  os,
MultiDimensionalHistogram const &  mdhist 
)
template<typename T >
std::ostream& numeric::operator<< ( std::ostream &  stream,
xyzTransform< T > const &  m 
)
template<typename T >
std::ostream& numeric::operator<< ( std::ostream &  stream,
Quaternion< T > const &  q 
)

stream << Quaternion output operator

Definition at line 35 of file Quaternion.io.hh.

References ObjexxFCL::uppercase(), and numeric::statistics::w().

template<typename T >
std::ostream& numeric::operator<< ( std::ostream &  stream,
xyzMatrix< T > const &  m 
)

stream << xyzMatrix output operator

Definition at line 36 of file xyzMatrix.io.hh.

References ObjexxFCL::uppercase(), and numeric::statistics::w().

template<typename T >
std::ostream& numeric::operator<< ( std::ostream &  stream,
xyzVector< T > const &  v 
)

stream << xyzVector output operator

Definition at line 36 of file xyzVector.io.hh.

References ObjexxFCL::uppercase(), test.T850_SubClassing::v, and numeric::statistics::w().

template<typename T >
std::ostream& numeric::operator<< ( std::ostream &  stream,
xyzTriple< T > const &  v 
)

stream << xyzTriple output operator

Definition at line 36 of file xyzTriple.io.hh.

References ObjexxFCL::uppercase(), test.T850_SubClassing::v, and numeric::statistics::w().

template<typename T >
std::ostream& numeric::operator<< ( std::ostream &  stream,
BodyPosition< T > const &  p 
)
std::ostream & numeric::operator<< ( ostream &  out,
const Polynomial_1d &  poly 
)

Definition at line 231 of file polynomial.cc.

References numeric::Polynomial_1d::show().

template<typename T >
std::ostream& numeric::operator<< ( std::ostream &  output,
const IntervalSet< T > &  interval 
)
inline

Definition at line 263 of file IntervalSet.hh.

References contacts::output.

template<typename T >
std::ostream& numeric::operator<< ( std::ostream &  stream,
HomogeneousTransform< T > const &  ht 
)

Definition at line 638 of file HomogeneousTransform.hh.

std::ostream& numeric::operator<< ( std::ostream &  stream,
HomogeneousTransform< double > const &  ht 
)
inline

Definition at line 667 of file HomogeneousTransform.hh.

template<typename T >
bool numeric::operator<= ( xyzMatrix< T > const &  a,
xyzMatrix< T > const &  b 
)
template<typename T >
bool numeric::operator<= ( xyzMatrix< T > const &  m,
T const &  t 
)

xyzMatrix <= T

template<typename T >
bool numeric::operator<= ( xyzTriple< T > const &  a,
xyzTriple< T > const &  b 
)
template<typename T >
bool numeric::operator<= ( T const &  t,
xyzMatrix< T > const &  m 
)

T <= xyzMatrix.

template<typename T >
bool numeric::operator<= ( xyzTriple< T > const &  v,
T const &  t 
)

xyzTriple <= T

template<typename T >
bool numeric::operator<= ( T const &  t,
xyzTriple< T > const &  v 
)

T <= xyzTriple.

template<typename T >
bool numeric::operator<= ( xyzVector< T > const &  a,
xyzVector< T > const &  b 
)
template<typename T >
bool numeric::operator<= ( xyzVector< T > const &  v,
T const &  t 
)

xyzVector <= T

template<typename T >
bool numeric::operator<= ( T const &  t,
xyzVector< T > const &  v 
)

T <= xyzVector.

template<typename T >
bool numeric::operator== ( MathVector< T > const &  VECTOR_A,
MathVector< T > const &  VECTOR_B 
)
inline
Returns
operator == (Comparison) MathVectors

Definition at line 143 of file MathVector_operations.hh.

References numeric::MathVector< T >::begin(), numeric::MathVector< T >::end(), numeric::MathVector< T >::size(), and test.T007_TracerIO::T.

template<typename T >
bool numeric::operator== ( MathVector< T > const &  VECTOR,
T const &  X 
)
inline
Returns
operator MathVector == X (Comparison with T value) MathVectors

Definition at line 168 of file MathVector_operations.hh.

References numeric::MathVector< T >::begin(), numeric::MathVector< T >::end(), test.T007_TracerIO::T, and ObjexxFCL::format::X().

template<typename T >
bool numeric::operator== ( const MathMatrix< T > &  MATRIX_LHS,
const MathMatrix< T > &  MATRIX_RHS 
)
inline

compare to matricess for equality

Parameters
MATRIX_LHSlhs matrix
MATRIX_RHSrhs matrix
Returns
true is they are equal in size and all pairs of items are equal

Definition at line 180 of file MathMatrix_operations.hh.

References numeric::MathMatrix< T >::begin(), numeric::MathMatrix< T >::end(), and ObjexxFCL::equal().

template<typename T >
bool numeric::operator== ( T const &  X,
MathVector< T > const &  VECTOR 
)
inline
Returns
operator X == MathVector(Comparison with T value)

Definition at line 185 of file MathVector_operations.hh.

template<typename T >
bool numeric::operator== ( const MathMatrix< T > &  MATRIX_LHS,
const T &  VALUE_RHS 
)
inline

compare if all items in matrix are equal to a given VALUE

Parameters
MATRIX_LHSmatrix with values
VALUE_RHSvalue that is compared against
Returns
true if matrix is empty are all elements in matrix are equal to given VALUE

Definition at line 208 of file MathMatrix_operations.hh.

References numeric::MathMatrix< T >::begin(), and numeric::MathMatrix< T >::end().

template<typename T >
bool numeric::operator== ( const T &  VALUE_LHS,
const MathMatrix< T > &  MATRIX_RHS 
)
inline

compare if all items in matrix are equal to a given VALUE

Parameters
VALUE_LHSvalue that is compared against
MATRIX_RHSmatrix with values
Returns
true if matrix is empty are all elements in matrix are equal to given VALUE

Definition at line 223 of file MathMatrix_operations.hh.

template<typename T >
bool numeric::operator== ( BodyPosition< T > const &  p1,
BodyPosition< T > const &  p2 
)
template<typename T >
bool numeric::operator== ( Quaternion< T > const &  q1,
Quaternion< T > const &  q2 
)
template<typename T >
bool numeric::operator== ( xyzMatrix< T > const &  a,
xyzMatrix< T > const &  b 
)
template<typename T >
bool numeric::operator== ( xyzMatrix< T > const &  m,
T const &  t 
)

xyzMatrix == T

template<typename T >
bool numeric::operator== ( xyzTriple< T > const &  a,
xyzTriple< T > const &  b 
)
template<typename T >
bool numeric::operator== ( T const &  t,
xyzMatrix< T > const &  m 
)

T == xyzMatrix.

template<typename T >
bool numeric::operator== ( xyzTriple< T > const &  v,
T const &  t 
)

xyzTriple == T

template<typename T >
bool numeric::operator== ( T const &  t,
xyzTriple< T > const &  v 
)

T == xyzTriple.

template<typename T >
bool numeric::operator== ( xyzVector< T > const &  a,
xyzVector< T > const &  b 
)
template<typename T >
bool numeric::operator== ( xyzVector< T > const &  v,
T const &  t 
)

xyzVector == T

template<typename T >
bool numeric::operator== ( T const &  t,
xyzVector< T > const &  v 
)

T == xyzVector.

template<typename T >
bool numeric::operator> ( xyzMatrix< T > const &  a,
xyzMatrix< T > const &  b 
)
template<typename T >
bool numeric::operator> ( xyzMatrix< T > const &  m,
T const &  t 
)

xyzMatrix > T

template<typename T >
bool numeric::operator> ( xyzTriple< T > const &  a,
xyzTriple< T > const &  b 
)
template<typename T >
bool numeric::operator> ( T const &  t,
xyzMatrix< T > const &  m 
)

T > xyzMatrix.

template<typename T >
bool numeric::operator> ( xyzTriple< T > const &  v,
T const &  t 
)

xyzTriple > T

template<typename T >
bool numeric::operator> ( T const &  t,
xyzTriple< T > const &  v 
)

T > xyzTriple.

template<typename T >
bool numeric::operator> ( xyzVector< T > const &  a,
xyzVector< T > const &  b 
)
template<typename T >
bool numeric::operator> ( xyzVector< T > const &  v,
T const &  t 
)

xyzVector > T

template<typename T >
bool numeric::operator> ( T const &  t,
xyzVector< T > const &  v 
)

T > xyzVector.

template<typename T >
bool numeric::operator>= ( xyzMatrix< T > const &  a,
xyzMatrix< T > const &  b 
)
template<typename T >
bool numeric::operator>= ( xyzMatrix< T > const &  m,
T const &  t 
)

xyzMatrix >= T

template<typename T >
bool numeric::operator>= ( xyzTriple< T > const &  a,
xyzTriple< T > const &  b 
)
template<typename T >
bool numeric::operator>= ( T const &  t,
xyzMatrix< T > const &  m 
)

T >= xyzMatrix.

template<typename T >
bool numeric::operator>= ( xyzTriple< T > const &  v,
T const &  t 
)

xyzTriple >= T

template<typename T >
bool numeric::operator>= ( T const &  t,
xyzTriple< T > const &  v 
)

T >= xyzTriple.

template<typename T >
bool numeric::operator>= ( xyzVector< T > const &  a,
xyzVector< T > const &  b 
)
template<typename T >
bool numeric::operator>= ( xyzVector< T > const &  v,
T const &  t 
)

xyzVector >= T

template<typename T >
bool numeric::operator>= ( T const &  t,
xyzVector< T > const &  v 
)

T >= xyzVector.

template<typename T >
std::istream& numeric::operator>> ( std::istream &  stream,
xyzTransform< T > &  m 
)

stream >> xyzTransform input operator

Note
Reads row-ordered matrix elements from one or multiple lines

Definition at line 51 of file xyzTransform.io.hh.

References numeric::xyzTransform< typename >::R, and numeric::xyzTransform< typename >::t.

template<typename T >
std::istream& numeric::operator>> ( std::istream &  stream,
Quaternion< T > &  q 
)

stream >> Quaternion input operator

Note
Supports whitespace-separated values with optional commas between values as long as whitespace is also present
Quaternion can optionally be enclosed in parentheses () or square brackets []
String or char values containing whitespace or commas or enclosed in quotes are not supported

Definition at line 66 of file Quaternion.io.hh.

References numeric::Quaternion< typename >::w(), numeric::Quaternion< typename >::x(), numeric::Quaternion< typename >::y(), and numeric::Quaternion< typename >::z().

template<typename T >
std::istream& numeric::operator>> ( std::istream &  stream,
xyzVector< T > &  v 
)

stream >> xyzVector input operator

Note
Supports whitespace-separated values with optional commas between values as long as whitespace is also present
Vector can optionally be enclosed in parentheses () or square brackets []
String or char values containing whitespace or commas or enclosed in quotes are not supported

Definition at line 67 of file xyzVector.io.hh.

References numeric::xyzVector< typename >::x(), numeric::xyzVector< typename >::y(), and numeric::xyzVector< typename >::z().

template<typename T >
std::istream& numeric::operator>> ( std::istream &  stream,
xyzTriple< T > &  v 
)

stream >> xyzTriple input operator

Note
Supports whitespace-separated values with optional commas between values as long as whitespace is also present
Vector can optionally be enclosed in parentheses () or square brackets []
String or char values containing whitespace or commas or enclosed in quotes are not supported

Definition at line 67 of file xyzTriple.io.hh.

References numeric::xyzTriple< typename >::x(), numeric::xyzTriple< typename >::y(), and numeric::xyzTriple< typename >::z().

template<typename T >
std::istream& numeric::operator>> ( std::istream &  stream,
BodyPosition< T > &  p 
)
template<typename T >
std::istream& numeric::operator>> ( std::istream &  stream,
xyzMatrix< T > &  m 
)
template<typename T >
MathVector< T > numeric::operator^ ( T const &  X,
MathVector< T > const &  VECTOR 
)
inline
template<typename T >
xyzMatrix< T > numeric::outer_product ( xyzVector< T > const &  a,
xyzVector< T > const &  b 
)
inline
template<typename T >
T numeric::principal_angle ( T const &  angle)
inline

Principal value of angle in radians on ( -pi, pi ].

Definition at line 35 of file angle.functions.hh.

References remainder().

template<typename T >
T numeric::principal_angle_degrees ( T const &  angle)
inline

Principal value of angle in degrees on ( -180, 180 ].

Definition at line 55 of file angle.functions.hh.

References remainder(), and test.T007_TracerIO::T.

template<typename T >
T numeric::principal_angle_radians ( T const &  angle)
inline

Principal value of angle in radians on ( -pi, pi ].

Definition at line 45 of file angle.functions.hh.

References remainder().

template<typename T >
xyzVector< T > numeric::principal_component_eigenvalues ( utility::vector1< xyzVector< T > > const &  coords)
inline

return a vector containing the eigenvalues corresponding to the first 3 principal components of the given set of points.

Definition at line 59 of file PCA.hh.

References principal_components_and_eigenvalues().

template<typename T >
xyzMatrix< T > numeric::principal_components ( utility::vector1< xyzVector< T > > const &  coords)
inline

return a matrix containing the first 3 principal components of the given set of points. Matrix columns are principal components, first column is first component, etc.

Definition at line 50 of file PCA.hh.

References principal_components_and_eigenvalues().

Referenced by first_principal_component().

template<typename T >
std::pair<xyzMatrix<T>, xyzVector<T> > numeric::principal_components_and_eigenvalues ( utility::vector1< xyzVector< T > > const &  coords)
inline

return a pair containing a matrix of the first 3 principal components and a vector of the corresponding eigenvalues of the given set of points.

Definition at line 68 of file PCA.hh.

References numeric::xyzMatrix< typename >::col(), numeric::xyzMatrix< typename >::col_x(), eigenvector_jacobi(), assign_charges::first, test.T007_TracerIO::T, numeric::xyzVector< typename >::x(), numeric::xyzVector< typename >::y(), and numeric::xyzVector< typename >::z().

Referenced by principal_component_eigenvalues(), and principal_components().

std::pair<utility::vector1< utility::vector1< Real > >, utility::vector1< Real > > numeric::principal_components_and_eigenvalues_ndimensions ( utility::vector1< utility::vector1< Real > > const &  coords,
bool const  shift_center 
)
inline

Return a pair containing a matrix (vector of vectors) of all of the principal components and a vector of the corresponding eigenvalues of the given set of points in n-dimensional space.

Note that this does not assume that the input vectors are 3-dimensional. If shift_center=false, the mean vector is not subtracted by this function. (Failure to subtract mean vector prior to function call will produce odd results, however.)

Author
Vikram K. Mulligan (vmull.nosp@m.ig@u.nosp@m.w.edu)

Definition at line 128 of file PCA.hh.

References runtime_assert_string_msg, and amino_acids::size.

void numeric::print_probabilities ( const utility::vector1< double > &  probs,
std::ostream &  out 
)

Writes probs to the specified ostream.

Definition at line 46 of file prob_util.cc.

template<typename T >
xyzVector< T > numeric::product ( xyzMatrix< T > const &  m,
xyzVector< T > const &  v 
)
inline
template<class ForwardIterator >
void numeric::product ( ForwardIterator  probs1_first,
ForwardIterator  probs1_last,
ForwardIterator  probs2_first,
ForwardIterator  probs2_last 
)

Multiplies two probability vectors with one another. Probability vectors are assumed to have equal lengths.

Definition at line 56 of file prob_util.hh.

References normalize().

Referenced by instantiate_numeric_functions(), numeric::HomogeneousTransform< double >::operator*(), and numeric::BodyPosition< typename >::transformed().

template<typename T >
Quaternion< T > numeric::product ( Quaternion< T > const &  q2,
Quaternion< T > const &  q1,
bool const  precise 
)

Product: Quaternion * Quaternion.

template<typename T >
T numeric::proj_angl ( MathVector< T > const &  VECTOR_A,
MathVector< T > const &  VECTOR_B,
MathVector< T > const &  VECTOR_C,
MathVector< T > const &  VECTOR_D 
)
inline
Returns
projection angle between four MathVectors A->B and C->D

Definition at line 55 of file MathVector_operations.hh.

References Equations::angle(), max(), min(), numeric::MathVector< T >::norm(), and test.T007_TracerIO::T.

Referenced by proj_angl().

template<typename T >
T numeric::proj_angl ( MathVector< T > const &  VECTOR_A,
MathVector< T > const &  VECTOR_B,
MathVector< T > const &  VECTOR_C 
)
inline
Returns
projection angle between three MathVectors A->B and A->C

Definition at line 70 of file MathVector_operations.hh.

References proj_angl().

template<typename T >
T numeric::proj_angl ( MathVector< T > const &  VECTOR_A,
MathVector< T > const &  VECTOR_B 
)
inline
Returns
projection angle between two MathVectors 0->A and 0->B

Definition at line 81 of file MathVector_operations.hh.

References proj_angl().

template<typename T >
xyzMatrix< T > numeric::projection_matrix ( xyzVector< T > const &  v)
inline

geometric center

Note
compute the geometric center of a list of points Projection matrix onto the line through a vector

Definition at line 193 of file xyz.functions.hh.

References numeric::xyzVector< typename >::length_squared(), numeric::xyzVector< typename >::x_, numeric::xyzVector< typename >::y_, and numeric::xyzVector< typename >::z_.

Referenced by instantiate_numeric_functions(), and rotation_matrix().

void numeric::read_probabilities_or_die ( const std::string &  filename,
utility::vector1< double > *  probs 
)

Loads normalized, per-residue probabilities from filename, storing the result in probs. Assumes line i holds the probability of sampling residue i. There must be 1 line for each residue in the pose on which this data will be used.

Definition at line 27 of file prob_util.cc.

References docking::p, and utility_exit_with_message.

template<typename T >
std::istream& numeric::read_row ( std::istream &  stream,
T &  x,
T &  y,
T &  z 
)

Read an xyzMatrix row from a stream.

Note
Supports whitespace-separated values with optional commas between values as long as whitespace is also present
Rows can optionally be enclosed in parentheses () or square brackets []
String or char values containing whitespace or commas or enclosed in quotes are not supported

Definition at line 70 of file xyzMatrix.io.hh.

References x(), y(), and z().

template<typename T >
std::istream& numeric::read_row ( std::istream &  stream,
T &  x,
T &  y,
T &  z,
T &  t 
)

Read an BodyPosition row from a stream.

Note
Supports whitespace-separated values with optional commas between values as long as whitespace is also present
Rows can optionally be enclosed in parentheses () or square brackets []
String or char values containing whitespace or commas or enclosed in quotes are not supported

Definition at line 89 of file BodyPosition.io.hh.

References x(), y(), and z().

Referenced by operator>>().

template<typename T >
T numeric::remainder ( T const &  x,
T const &  y 
)
inline

Remainder of x with respect to division by y that is of smallest magnitude.

Note
Emulates the C99 remainder function but also supports integer arguments
Returns zero if y is zero
Return value has magnitude <= | y / 2 |
If | n - ( x / y ) | == .5 the nearest even n is used

Definition at line 572 of file numeric.functions.hh.

Referenced by zlib_stream::basic_zip_streambuf< Elem, Tr, ElemA, ByteT, ByteAT >::flush(), principal_angle(), principal_angle_degrees(), principal_angle_radians(), and zlib_stream::basic_zip_streambuf< Elem, Tr, ElemA, ByteT, ByteAT >::zip_to_stream().

template<typename T , typename S >
T numeric::remainder_conversion ( T const &  t,
S &  s 
)
inline

Remainder and result of conversion to a different type.

Definition at line 623 of file numeric.functions.hh.

References app.pyrosetta_toolkit.modules.SQLPDB::s.

convert an RGB color to HSV

Definition at line 19 of file color_util.cc.

numeric::xyzVector< platform::Real > numeric::rgb_to_hsv ( numeric::xyzVector< platform::Real rgb_triplet)
template<typename T >
T numeric::rotation_angle ( xyzMatrix< T > const &  R)
inline

Transformation from rotation matrix to magnitude of helical rotation.

Note
Input matrix must be orthogonal
Orientation of axis chosen so that the angle of rotation is non-negative [0,pi]

Definition at line 790 of file xyz.functions.hh.

References ObjexxFCL::abs(), numeric::NumericTraits< T >::pi(), sin_cos_range(), test.T007_TracerIO::T, and numeric::xyzMatrix< typename >::trace().

Referenced by numeric::EulerAngles< typename >::angular_distance_between(), and instantiate_numeric_functions().

template<typename T >
xyzVector< T > numeric::rotation_axis ( xyzMatrix< T > const &  R,
T &  theta 
)
inline
template<typename T >
xyzVector< T > numeric::rotation_axis_angle ( xyzMatrix< T > const &  R)
inline

Transformation from rotation matrix to compact axis-angle representation.

Note
Input matrix must be orthogonal
Orientation of axis chosen so that the angle of rotation is non-negative [0,pi]

Definition at line 902 of file xyz.functions.hh.

References rotation_axis(), and test.T007_TracerIO::T.

Referenced by instantiate_numeric_functions().

template<typename T >
xyzMatrix< T > numeric::rotation_matrix ( xyzVector< T > const &  axis,
T const &  theta 
)
inline
template<typename T >
xyzMatrix< T > numeric::rotation_matrix ( xyzVector< T > const &  axis_angle)
inline
template<typename T >
xyzMatrix< T > numeric::rotation_matrix_degrees ( xyzVector< T > const &  axis,
T const &  theta 
)
inline

Rotation matrix for rotation about an axis by an angle in degrees.

Definition at line 585 of file xyz.functions.hh.

References numeric::conversions::radians(), and rotation_matrix().

Referenced by numeric::random::gaussian_random_xform(), instantiate_numeric_functions(), and numeric::xyzTransform< numeric::Real >::rot_deg().

template<typename T >
xyzMatrix< T > numeric::rotation_matrix_radians ( xyzVector< T > const &  axis,
T const &  theta 
)
inline

Rotation matrix for rotation about an axis by an angle in radians.

Definition at line 572 of file xyz.functions.hh.

References rotation_matrix().

Referenced by instantiate_numeric_functions().

template<typename T >
T numeric::scalar_product ( MathVector< T > const &  VECTOR_A,
MathVector< T > const &  VECTOR_B 
)
Returns
scalar product of two MathVectors

Definition at line 88 of file MathVector_operations.hh.

template<typename T >
T numeric::sec ( T const &  x)
inline

Secant.

Definition at line 44 of file trig.functions.hh.

References test.T007_TracerIO::T.

template<typename T >
utility::json_spirit::Value numeric::serialize ( xyzVector< T >  coords)
inline

Convert vector to a json_spirit Value.

Note
Format is a list in the form [x,y,z]

Definition at line 29 of file xyz.json.hh.

References utility::tools::make_vector(), x(), numeric::xyzVector< typename >::x(), y(), numeric::xyzVector< typename >::y(), z(), and numeric::xyzVector< typename >::z().

template<typename T >
int numeric::sign ( T const &  x)
inline
template<typename S , typename T >
T numeric::sign_transfered ( S const &  sigma,
T const &  x 
)
inline

Sign transfered value.

Definition at line 334 of file numeric.functions.hh.

References ObjexxFCL::abs().

Referenced by numeric::model_quality::rmsfitca2(), and numeric::model_quality::rmsfitca3().

template<typename T >
T numeric::sin_cos_range ( T const &  x,
T const &  tol = T( .001 ) 
)
inline

Adjust a sine or cosine value to the valid [-1,1] range if within a specified tolerance or exit with an error.

Note
The = on the first <= and >= else if conditions were added to work-around optimization register passing bugs where x can be passed by a register with a float value of +/-1.0f but where x has a full register precision value slightly different from +/-1.0f/ The first else if cases were failing but with the = added these if conditions will succeed. The alternative fix of declaring "volatile float const x" is slower for most calls. DON'T REMOVE THESE = EVEN THOUGH THEY APPEAR TO BE SUPERFLUOUS!!!

Definition at line 95 of file trig.functions.hh.

References utility::io::oc::cerr, utility::io::oc::cout, test.T007_TracerIO::T, loops_kic::tol, utility_exit, and x().

Referenced by angle_radians(), arccos(), numeric::xyzTransform< numeric::Real >::euler_angles_rad(), numeric::HomogeneousTransform< double >::euler_angles_rad(), numeric::EulerAngles< typename >::from_rotation_matrix(), rotation_angle(), rotation_axis(), numeric::xyzTransform< numeric::Real >::rotation_cosine(), and numeric::xyzTransform< numeric::Real >::rotation_sine().

template<typename T >
T numeric::sin_of ( xyzTriple< T > const &  a,
xyzTriple< T > const &  b 
)

Sine of angle between two vectors.

template<typename T >
T numeric::sin_of ( xyzTriple< T > const &  a,
xyzTriple< T > const &  b,
xyzTriple< T > const &  c 
)

Sine of angle formed by three consecutive points.

template<typename T >
T numeric::sin_of ( xyzVector< T > const &  a,
xyzVector< T > const &  b 
)

Sine of angle between two vectors.

template<typename T >
T numeric::sin_of ( xyzVector< T > const &  a,
xyzVector< T > const &  b,
xyzVector< T > const &  c 
)

Sine of angle formed by three consecutive points.

template<typename T >
xyzVector< T > numeric::spherical_to_xyz ( sphericalVector< T > const &  spherical)
inline
template<typename T >
T numeric::square ( T const &  x)
inline
template<typename T >
void numeric::subtract ( xyzTriple< T > const &  a,
xyzTriple< T > const &  b,
xyzTriple< T > &  r 
)

Subtract: xyzTriple - xyzTriple.

template<typename T >
void numeric::subtract ( xyzTriple< T > const &  v,
T const &  t,
xyzTriple< T > &  r 
)

Subtract: xyzTriple - T.

template<typename T >
void numeric::subtract ( T const &  t,
xyzTriple< T > const &  v,
xyzTriple< T > &  r 
)

Subtract: T - xyzTriple.

template<typename T >
void numeric::subtract ( xyzVector< T > const &  a,
xyzVector< T > const &  b,
xyzVector< T > &  r 
)

Subtract: xyzVector - xyzVector.

template<typename T >
void numeric::subtract ( xyzVector< T > const &  v,
T const &  t,
xyzVector< T > &  r 
)

Subtract: xyzVector - T.

template<typename T >
void numeric::subtract ( T const &  t,
xyzVector< T > const &  v,
xyzVector< T > &  r 
)

Subtract: T - xyzVector.

template<class InputIterator >
double numeric::sum ( InputIterator  first,
InputIterator  last 
)

Returns the sum of all elements on the range [first, last)

Definition at line 27 of file prob_util.hh.

References assign_charges::first.

Referenced by numeric::nls::lm_lmdif(), numeric::nls::lm_lmpar(), numeric::nls::lm_qrfac(), numeric::nls::lm_qrsolv(), and normalize().

template<typename T >
xyzVector< T > numeric::transpose_product ( xyzMatrix< T > const &  m,
xyzVector< T > const &  v 
)
inline
template<typename T >
std::string numeric::truncate_and_serialize_xyz_vector ( xyzVector< T >  vector,
Real  precision 
)
double numeric::urs_norm4 ( double  a,
double  b,
double  c,
double  d 
)
inline

Definition at line 30 of file UniformRotationSampler.hh.

Referenced by urs_R2ang().

platform::Real numeric::urs_R2ang ( numeric::xyzMatrix< Real >  R)
inline
template<typename T >
ObjexxFCL::FArray2D<T> numeric::vector_of_xyzvectors_to_FArray ( utility::vector1< xyzVector< T > > const &  input)
inline

convert a vector1 of xyzVectors to an FArray2D

Definition at line 1120 of file xyz.functions.hh.

References ObjexxFCL::index(), app.surface_docking.surface_docking::input, contacts::output, x(), y(), and z().

template<typename T >
T numeric::wrap_180 ( T const &  angle)
inline

Wrap the given angle in the range [-180, 180).

No conversion to degrees is implied.

Definition at line 46 of file wrap_angles.hh.

template<typename T >
T numeric::wrap_2pi ( T const &  angle)
inline

Wrap the given angle in the range [0, 2 * pi).

No conversion to radians is implied.

Definition at line 25 of file wrap_angles.hh.

References Equations::angle(), and numeric::NumericTraits< T >::pi_2().

Referenced by numeric::kinematic_closure::radians::torsion().

template<typename T >
T numeric::wrap_360 ( T const &  angle)
inline

Wrap the given angle in the range [0, 360).

No conversion to degrees is implied.

Definition at line 39 of file wrap_angles.hh.

References Equations::angle().

template<typename T >
T numeric::wrap_pi ( T const &  angle)
inline

Wrap the given angle in the range [-pi, pi).

No conversion to radians is implied.

Definition at line 32 of file wrap_angles.hh.

References numeric::NumericTraits< T >::pi().

template<typename T >
xyzMatrix< T > numeric::x_rotation_matrix ( T const &  theta)
inline

Rotation matrix for rotation about the x axis by an angle in radians.

Definition at line 598 of file xyz.functions.hh.

References numeric::xyzMatrix< typename >::rows(), and test.T007_TracerIO::T.

Referenced by instantiate_numeric_functions(), x_rotation_matrix_degrees(), and x_rotation_matrix_radians().

template<typename T >
xyzMatrix< T > numeric::x_rotation_matrix_degrees ( T const &  theta)
inline

Rotation matrix for rotation about the x axis by an angle in degrees.

Definition at line 629 of file xyz.functions.hh.

References numeric::conversions::radians(), and x_rotation_matrix().

Referenced by instantiate_numeric_functions(), numeric::random::random_rotation_angle(), and numeric::HomogeneousTransform< double >::set_xaxis_rotation_deg().

template<typename T >
xyzMatrix< T > numeric::x_rotation_matrix_radians ( T const &  theta)
inline

Rotation matrix for rotation about the x axis by an angle in radians.

Definition at line 617 of file xyz.functions.hh.

References x_rotation_matrix().

Referenced by instantiate_numeric_functions(), main(), and numeric::HomogeneousTransform< double >::set_xaxis_rotation_rad().

template<typename T >
sphericalVector< T > numeric::xyz_to_spherical ( xyzVector< T > const &  xyz)
inline
template<typename T >
ObjexxFCL::FArray2D<T> numeric::xyzmatrix_to_FArray ( numeric::xyzMatrix< T > const &  input)
inline
template<typename T >
xyzMatrix< T > numeric::y_rotation_matrix ( T const &  theta)
inline

Rotation matrix for rotation about the y axis by an angle in radians.

Definition at line 641 of file xyz.functions.hh.

References numeric::xyzMatrix< typename >::rows(), and test.T007_TracerIO::T.

Referenced by instantiate_numeric_functions(), y_rotation_matrix_degrees(), and y_rotation_matrix_radians().

template<typename T >
xyzMatrix< T > numeric::y_rotation_matrix_degrees ( T const &  theta)
inline

Rotation matrix for rotation about the y axis by an angle in degrees.

Definition at line 672 of file xyz.functions.hh.

References numeric::conversions::radians(), and y_rotation_matrix().

Referenced by instantiate_numeric_functions(), numeric::random::random_rotation_angle(), and numeric::HomogeneousTransform< double >::set_yaxis_rotation_deg().

template<typename T >
xyzMatrix< T > numeric::y_rotation_matrix_radians ( T const &  theta)
inline

Rotation matrix for rotation about the y axis by an angle in radians.

Definition at line 660 of file xyz.functions.hh.

References y_rotation_matrix().

Referenced by instantiate_numeric_functions(), main(), and numeric::HomogeneousTransform< double >::set_yaxis_rotation_rad().

template<typename T >
xyzMatrix< T > numeric::z_rotation_matrix ( T const &  theta)
inline

Rotation matrix for rotation about the z axis by an angle in radians.

Definition at line 684 of file xyz.functions.hh.

References numeric::xyzMatrix< typename >::rows(), and test.T007_TracerIO::T.

Referenced by instantiate_numeric_functions(), zinc1_homodimer_design::setup_rollmoving(), z_rotation_matrix_degrees(), and z_rotation_matrix_radians().

template<typename T >
xyzMatrix< T > numeric::z_rotation_matrix_degrees ( T const &  theta)
inline

Rotation matrix for rotation about the z axis by an angle in degrees.

Definition at line 715 of file xyz.functions.hh.

References numeric::conversions::radians(), and z_rotation_matrix().

Referenced by instantiate_numeric_functions(), numeric::random::random_rotation_angle(), and numeric::HomogeneousTransform< double >::set_zaxis_rotation_deg().

template<typename T >
xyzMatrix< T > numeric::z_rotation_matrix_radians ( T const &  theta)
inline

Rotation matrix for rotation about the z axis by an angle in radians.

Definition at line 703 of file xyz.functions.hh.

References z_rotation_matrix().

Referenced by instantiate_numeric_functions(), main(), and numeric::HomogeneousTransform< double >::set_zaxis_rotation_rad().