![]() |
Rosetta
2019.12
|
Unit headers. More...
Classes | |
class | AgglomerativeHierarchicalClusterer |
class | AverageLinkClusterer |
class | AxisRotationSampler |
class | BodyPosition |
Rigid body 3-D position/transform. More... | |
class | Calculator |
class | CalculatorParser |
class | ClusteringTreeNode |
class | ClusterOptions |
class | ColPointers |
class | ColsPointer |
class | ColVectors |
class | CompleteLinkClusterer |
struct | CubicPolynomial |
class | DietNode |
class | DiscreteIntervalEncodingTree |
class | EulerAngles |
Euler angles 3-D orientation representation. More... | |
struct | FastRemainderSelector |
Fast remainder function selector class for non-integer types. More... | |
struct | FastRemainderSelector< T, true > |
Fast remainder function selector class for integer types. More... | |
class | HomogeneousTransform |
class | HomogeneousTransform_Double |
class | IntervalSet |
class | IntervalSet_Double |
struct | IOTraits |
Numerics input/output type traits. More... | |
struct | IOTraits< double > |
Numerics input/output type traits double specialization. More... | |
struct | IOTraits< float > |
Numerics input/output type traits float Specialization. More... | |
struct | IOTraits< int > |
Numerics input/output type traits int specialization. More... | |
struct | IOTraits< long double > |
Numerics input/output type traits long double specialization. More... | |
struct | IOTraits< long int > |
: Numerics input/output type traits long int specialization More... | |
struct | IOTraits< short int > |
Numerics input/output type traits short int specialization. More... | |
struct | IOTraits< unsigned int > |
: Numerics input/output type traits unsigned int specialization More... | |
struct | IOTraits< unsigned long int > |
Numerics input/output type traits unsigned long int specialization. More... | |
struct | IOTraits< unsigned short int > |
: Numerics input/output type traits unsigned short int specialization More... | |
class | MathMatrix |
class | MathNTensor |
class | MathNTensorBase |
class | MathTensor |
class | MathVector |
struct | ModSelector |
Mod function selector class for non-integer types. More... | |
struct | ModSelector< T, true > |
Mod function selector class for integer types. More... | |
struct | ModuloSelector |
Modulo function selector class for non-integer types. More... | |
struct | ModuloSelector< T, true > |
Modulo function selector class for integer types. More... | |
class | MultiDimensionalHistogram |
a class for accumulating a histogram of one or more numeric variables More... | |
struct | NearestSelector |
Nearest function selector class for R non-integer or T integer. More... | |
struct | NearestSelector< R, T, true > |
Nearest function selector class for R integer and T non-integer. More... | |
struct | NumericTraits |
NumericTraits: Numeric type traits. More... | |
struct | NumericTraits< double > |
NumericTraits: Numeric type traits double specialization. More... | |
struct | NumericTraits< float > |
NumericTraits: Numeric type traits float specialization. More... | |
struct | NumericTraits< long double > |
NumericTraits: Numeric type traits long double specialization. More... | |
class | Polynomial_1d |
class | Py_xyzTransform_double |
class | Quaternion |
Unit quaternion 3-D orientation representation. More... | |
struct | RemainderSelector |
Remainder function selector class for non-integer types. More... | |
struct | RemainderSelector< T, true > |
Remainder function selector class for integer types. More... | |
class | RocCurve |
class | RocPoint |
class | RowPointers |
class | RowsPointer |
class | RowVectors |
class | SingleLinkClusterer |
class | sphericalVector |
sphericalVector: Fast spherical-coordinate numeric vector More... | |
struct | SplineParameters |
SplineParameters is a simple struct for holding the cubic spline polynomials used in the etable to interpolate the lennard-jones attractive and LK-solvation terms to zero smoothly. These splines have exactly two knots to represent them, and the same x values are used for all the knots: thus the only parameters needed are the y values at the knots, and the second-derivatives for the polynomials at knots. More... | |
class | UniformRotationSampler |
struct | urs_Quat |
class | VoxelArray |
class | VoxelGrid |
struct | XformHash32 |
struct | XformHash64 |
struct | Xforms |
class | xyzMatrix |
xyzMatrix: Fast 3x3 xyz matrix template More... | |
class | xyzTransform |
class | xyzTriple |
Fast (x,y,z)-coordinate vector container. More... | |
class | xyzVector |
xyzVector: Fast (x,y,z)-coordinate numeric vector More... | |
Enumerations | |
enum | RocStatus { true_positive, true_negative, false_positive, false_negative } |
Functions | |
template<class T > | |
void | get_cluster_data (utility::vector1< T > &data_in, ClusteringTreeNodeOP cluster, utility::vector1< T > &data_out) |
template<typename T > | |
T | principal_angle (T const &angle) |
Principal value of angle in radians on ( -pi, pi ]. More... | |
template<typename T > | |
T | principal_angle_radians (T const &angle) |
Principal value of angle in radians on ( -pi, pi ]. More... | |
template<typename T > | |
T | principal_angle_degrees (T const &angle) |
Principal value of angle in degrees on ( -180, 180 ]. More... | |
template<typename T > | |
T | nonnegative_principal_angle (T const &angle) |
Positive principal value of angle in radians on [ 0, 2*pi ) More... | |
template<typename T > | |
T | nonnegative_principal_angle_radians (T const &angle) |
Positive principal value of angle in radians on [ 0, 2*pi ) More... | |
template<typename T > | |
T | nonnegative_principal_angle_degrees (T const &angle) |
Positive principal value of angle in degrees on [ 0, 360 ) More... | |
template<typename T > | |
T | nearest_angle (T const &angle, T const &base_angle) |
Nearest periodic value of angle to a base angle in radians. More... | |
template<typename T > | |
T | nearest_angle_radians (T const &angle, T const &base_angle) |
Nearest periodic value of angle to a base angle in radians. More... | |
template<typename T > | |
T | nearest_angle_degrees (T const &angle, T const &base_angle) |
Nearest periodic value of angle to a base angle in degrees. More... | |
template<typename T > | |
void | R2quat (xyzMatrix< T > const &R, Quaternion< T > &Q) |
Interconvert Quaternion <=> Rotation Matrix. More... | |
template<typename T > | |
void | quat2R (Quaternion< T > const &Q, xyzMatrix< T > &R) |
Interconvert Quaternion <=> Rotation Matrix. More... | |
template<typename T > | |
bool | operator== (BodyPosition< T > const &p1, BodyPosition< T > const &p2) |
BodyPosition == BodyPosition. More... | |
template<typename T > | |
bool | operator!= (BodyPosition< T > const &p1, BodyPosition< T > const &p2) |
BodyPosition != BodyPosition. More... | |
template<typename T > | |
std::ostream & | operator<< (std::ostream &stream, BodyPosition< T > const &p) |
stream << BodyPosition output operator More... | |
template<typename T > | |
std::istream & | operator>> (std::istream &stream, BodyPosition< T > &p) |
stream >> BodyPosition input operator More... | |
template<typename T > | |
std::istream & | read_row (std::istream &stream, T &x, T &y, T &z, T &t) |
Read an BodyPosition row from a stream. More... | |
void | do_add_symbol (CalculatorParser &cp, std::string name, double value) |
double | do_abs (double a) |
double | do_pow (double a, double b) |
double | do_exp (double a) |
double | do_ln (double a) |
double | do_log10 (double a) |
double | do_log2 (double a) |
double | do_log (double a, double b) |
double | do_sqrt (double a) |
double | do_sin (double a) |
double | do_cos (double a) |
double | do_tan (double a) |
double | do_max (std::vector< double > a) |
double | do_min (std::vector< double > a) |
double | do_mean (std::vector< double > a) |
double | do_median (std::vector< double > a) |
numeric::xyzVector < platform::Real > | rgb_to_hsv (platform::Real r, platform::Real b, platform::Real g) |
convert an RGB color to HSV More... | |
numeric::xyzVector < platform::Real > | rgb_to_hsv (numeric::xyzVector< platform::Real > rgb_triplet) |
convert and RGB color to HSV More... | |
numeric::xyzVector < platform::Real > | hsv_to_rgb (platform::Real h, platform::Real s, platform::Real v) |
convert an HSV color to RGB More... | |
numeric::xyzVector < platform::Real > | hsv_to_rgb (numeric::xyzVector< platform::Real > hsv_triplet) |
convert an HSV color to RGB More... | |
CubicPolynomial | cubic_polynomial_from_spline (platform::Real xlo, platform::Real xhi, SplineParameters const &sp) |
Compute cubic polynomial coefficients from a set of SplineParameters. More... | |
platform::Real | eval_cubic_polynomial (platform::Real const x, CubicPolynomial const &cp) |
Evaluate cubic polynomial at value x given polynomial coefficients. More... | |
platform::Real | cubic_polynomial_deriv (platform::Real const x, CubicPolynomial const &cp) |
Evaluate derivative of cubic polynomial given x and polynomial coefficients. More... | |
void | ccd_angle (utility::vector1< xyzVector< Real > > const &F, utility::vector1< xyzVector< Real > > const &M, xyzVector< Real > const &axis_atom, xyzVector< Real > const &theta_hat, Real &alpha, Real &S) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &stream, HomogeneousTransform< T > const &ht) |
std::ostream & | operator<< (std::ostream &stream, HomogeneousTransform< double > const &ht) |
template<class Value > | |
double | linear_interpolate (Value start, Value stop, unsigned curr_stage, unsigned num_stages) |
Linearly interpolates a quantity from start to stop over (num_stages + 1) stages. More... | |
template<typename T > | |
std::ostream & | operator<< (std::ostream &output, const IntervalSet< T > &interval) |
template<typename T > | |
MathMatrix< T > & | operator+= (MathMatrix< T > &MATRIX_LHS, const MathMatrix< T > &MATRIX_RHS) |
add one matrix to another More... | |
template<typename T > | |
MathMatrix< T > & | operator-= (MathMatrix< T > &MATRIX_LHS, const MathMatrix< T > &MATRIX_RHS) |
subtract one matrix from another More... | |
template<typename T > | |
MathMatrix< T > & | operator/= (MathMatrix< T > &MATRIX_LHS, const MathMatrix< T > &) |
divide one matrix by another More... | |
template<typename T > | |
MathMatrix< T > & | operator+= (MathMatrix< T > &MATRIX_LHS, const T &VALUE) |
add scalar to matrix More... | |
template<typename T > | |
MathMatrix< T > & | operator-= (MathMatrix< T > &MATRIX_LHS, const T &VALUE) |
subtract scalar from matrix More... | |
template<typename T > | |
MathMatrix< T > & | operator*= (MathMatrix< T > &MATRIX_LHS, const T &SCALAR) |
multiply matrix with scalar More... | |
template<typename T > | |
MathMatrix< T > & | operator/= (MathMatrix< T > &MATRIX_LHS, const T &SCALAR) |
divide matrix by scalar More... | |
template<typename T > | |
bool | operator== (const MathMatrix< T > &MATRIX_LHS, const MathMatrix< T > &MATRIX_RHS) |
compare to matricess for equality More... | |
template<typename T > | |
bool | operator!= (const MathMatrix< T > &MATRIX_LHS, const MathMatrix< T > &MATRIX_RHS) |
compare to matrices for inequality More... | |
template<typename T > | |
bool | operator== (const MathMatrix< T > &MATRIX_LHS, const T &VALUE_RHS) |
compare if all items in matrix are equal to a given VALUE More... | |
template<typename T > | |
bool | operator== (const T &VALUE_LHS, const MathMatrix< T > &MATRIX_RHS) |
compare if all items in matrix are equal to a given VALUE More... | |
template<typename T > | |
bool | operator!= (const MathMatrix< T > &MATRIX_LHS, const T &VALUE_RHS) |
compare if all items in matrix are not equal to a given VALUE More... | |
template<typename T > | |
bool | operator!= (const T &VALUE_LHS, const MathMatrix< T > &MATRIX_RHS) |
compare if all items in matrix are not equal to a given VALUE More... | |
template<typename T > | |
MathMatrix< T > | operator+ (const MathMatrix< T > &MATRIX_LHS, const MathMatrix< T > &MATRIX_RHS) |
sum two matrixs of equal size More... | |
template<typename T > | |
MathMatrix< T > | operator- (const MathMatrix< T > &MATRIX_LHS, const MathMatrix< T > &MATRIX_RHS) |
subtract two matrixs of equal size More... | |
template<typename T > | |
MathMatrix< T > | operator* (const MathMatrix< T > &MATRIX_LHS, const MathMatrix< T > &MATRIX_RHS) |
multiply two matrixs of equal size by building the inner product yielding the scalar product More... | |
template<typename T > | |
MathMatrix< T > | operator+ (const MathMatrix< T > &MATRIX_LHS, const T &VALUE_RHS) |
add value to matrix More... | |
template<typename T > | |
MathMatrix< T > | operator+ (const T &VALUE_LHS, const MathMatrix< T > &MATRIX_RHS) |
add matrix to value More... | |
template<typename T > | |
MathMatrix< T > | operator- (const MathMatrix< T > &MATRIX_LHS, const T &VALUE_RHS) |
subtract value from matrix More... | |
template<typename T > | |
MathMatrix< T > | operator- (const T &VALUE_LHS, const MathMatrix< T > &MATRIX_RHS) |
subtract matrix from value More... | |
template<typename T > | |
MathMatrix< T > | operator* (const T &SCALAR_LHS, const MathMatrix< T > &MATRIX_RHS) |
multiply scalar with matrix More... | |
template<typename T > | |
MathMatrix< T > | operator* (const MathMatrix< T > &MATRIX_LHS, const T &SCALAR_RHS) |
multiply matrix with scalar More... | |
template<typename T > | |
MathVector< T > | operator* (const MathMatrix< T > &MATRIX_LHS, const MathVector< T > &VECTOR_RHS) |
multiply matrix with vector More... | |
template<typename T > | |
MathMatrix< T > | operator/ (const MathMatrix< T > &MATRIX_LHS, const T &SCALAR_RHS) |
divide matrix with scalar More... | |
template<typename T > | |
MathMatrix< T > | operator/ (const T &SCALAR_LHS, const MathMatrix< T > &MATRIX_RHS) |
divide scalar by matrix More... | |
template<class T , numeric::Size N> | |
MathNTensorOP< T, N > | deep_copy (MathNTensor< T, N > const &source) |
template<class T , numeric::Size N> | |
bool | write_tensor_to_file_without_json (std::string const &filename, MathNTensor< T, N > const &tensor) |
template<class T , numeric::Size N> | |
void | read_tensor_from_file (std::string const &filename_input, MathNTensor< T, N > &tensor, utility::json_spirit::mObject &json) |
template<class T , numeric::Size N> | |
void | read_tensor_from_file (std::string const &filename, MathNTensor< T, N > &tensor) |
template<class T , numeric::Size N> | |
bool | write_tensor_to_file (std::string const &filename, MathNTensor< T, N > const &tensor, utility::json_spirit::Value const &json_input) |
template<class T , numeric::Size N> | |
bool | write_tensor_to_file (std::string const &filename, MathNTensor< T, N > const &tensor) |
template<class T > | |
MathNTensorBaseOP< T > | deep_copy (MathNTensorBase< T > const &source) |
template MathNTensorBaseOP< Real > | deep_copy (MathNTensorBase< Real > const &) |
Explicit template instantiation, apparently needed for PyRosetta. More... | |
template<typename T > | |
T | distance (MathVector< T > const &VECTOR_A, MathVector< T > const &VECTOR_B) |
template<typename T > | |
T | proj_angl (MathVector< T > const &VECTOR_A, MathVector< T > const &VECTOR_B, MathVector< T > const &VECTOR_C, MathVector< T > const &VECTOR_D) |
template<typename T > | |
T | proj_angl (MathVector< T > const &VECTOR_A, MathVector< T > const &VECTOR_B, MathVector< T > const &VECTOR_C) |
template<typename T > | |
T | proj_angl (MathVector< T > const &VECTOR_A, MathVector< T > const &VECTOR_B) |
template<typename T > | |
T | scalar_product (MathVector< T > const &VECTOR_A, MathVector< T > const &VECTOR_B) |
template<typename T > | |
MathVector< T > | MakeVector (T const &X) |
template<typename T > | |
MathVector< T > | MakeVector (T const &X, T const &Y) |
template<typename T > | |
MathVector< T > | MakeVector (T const &X, T const &Y, T const &Z) |
template<typename T > | |
MathVector< T > | operator- (MathVector< T > const &VECTOR) |
template<typename T > | |
MathVector< T > | operator+ (MathVector< T > const &VECTOR) |
template<typename T > | |
bool | operator== (MathVector< T > const &VECTOR_A, MathVector< T > const &VECTOR_B) |
template<typename T > | |
bool | operator!= (MathVector< T > const &VECTOR_A, MathVector< T > const &VECTOR_B) |
template<typename T > | |
bool | operator== (MathVector< T > const &VECTOR, T const &X) |
template<typename T > | |
bool | operator!= (MathVector< T > const &VECTOR, T const &X) |
template<typename T > | |
bool | operator== (T const &X, MathVector< T > const &VECTOR) |
template<typename T > | |
bool | operator!= (T const &X, MathVector< T > const &VECTOR) |
template<typename T > | |
MathVector< T > | operator+ (MathVector< T > const &VECTOR_A, MathVector< T > const &VECTOR_B) |
template<typename T > | |
MathVector< T > | operator- (MathVector< T > const &VECTOR_A, MathVector< T > const &VECTOR_B) |
template<typename T > | |
MathVector< T > | operator+ (MathVector< T > const &VECTOR, T const &X) |
template<typename T > | |
MathVector< T > | operator- (MathVector< T > const &VECTOR, T const &X) |
template<typename T > | |
MathVector< T > | operator+ (T const &X, MathVector< T > const &VECTOR) |
template<typename T > | |
MathVector< T > | operator- (T const &X, MathVector< T > const &VECTOR) |
template<typename T > | |
T | operator* (MathVector< T > const &VECTOR_A, MathVector< T > const &VECTOR_B) |
template<typename T > | |
MathVector< T > | operator* (T const &X, MathVector< T > const &VECTOR) |
template<typename T > | |
MathVector< T > | operator* (MathVector< T > const &VECTOR, T const &X) |
template<typename T > | |
MathVector< T > | operator/ (MathVector< T > const &VECTOR, T const &X) |
template<typename T > | |
MathVector< T > | operator/ (MathVector< T > const &VECTOR_A, MathVector< T > const &VECTOR_B) |
template<typename T > | |
MathVector< T > | operator/ (T const &X, MathVector< T > const &VECTOR) |
template<typename T > | |
MathVector< T > | operator^ (T const &X, MathVector< T > const &VECTOR) |
std::ostream & | operator<< (std::ostream &os, MultiDimensionalHistogram const &mdhist) |
short int | min (short int const a, short int const b) |
min( short int, short int ) More... | |
int | min (int const a, int const b) |
min( int, int ) More... | |
long int | min (long int const a, long int const b) |
min( long int, long int ) More... | |
unsigned short int | min (unsigned short int const a, unsigned short int const b) |
min( unsigned short int, unsigned short int ) More... | |
unsigned int | min (unsigned int const a, unsigned int const b) |
min( unsigned int, unsigned int ) More... | |
unsigned long int | min (unsigned long int const a, unsigned long int const b) |
min( unsigned long int, unsigned long int ) More... | |
float | min (float const a, float const b) |
min( float, float ) More... | |
double | min (double const a, double const b) |
min( double, double ) More... | |
long double | min (long double const a, long double const b) |
min( long double, long double ) More... | |
template<typename T > | |
T const & | min (T const &a, T const &b, T const &c) |
min( a, b, c ) More... | |
template<typename T > | |
T const & | min (T const &a, T const &b, T const &c, T const &d) |
min( a, b, c, d ) More... | |
template<typename T > | |
T const & | min (T const &a, T const &b, T const &c, T const &d, T const &e) |
min( a, b, c, d, e ) More... | |
template<typename T > | |
T const & | min (T const &a, T const &b, T const &c, T const &d, T const &e, T const &f) |
min( a, b, c, d, e, f ) More... | |
short int | max (short int const a, short int const b) |
max( short int, short int ) More... | |
int | max (int const a, int const b) |
max( int, int ) More... | |
long int | max (long int const a, long int const b) |
max( long int, long int ) More... | |
unsigned short int | max (unsigned short int const a, unsigned short int const b) |
max( unsigned short int, unsigned short int ) More... | |
unsigned int | max (unsigned int const a, unsigned int const b) |
max( unsigned int, unsigned int ) More... | |
unsigned long int | max (unsigned long int const a, unsigned long int const b) |
max( unsigned long int, unsigned long int ) More... | |
float | max (float const a, float const b) |
max( float, float ) More... | |
double | max (double const a, double const b) |
max( double, double ) More... | |
long double | max (long double const a, long double const b) |
max( long double, long double ) More... | |
template<typename T > | |
T const & | max (T const &a, T const &b, T const &c) |
max( a, b, c ) More... | |
template<typename T > | |
T const & | max (T const &a, T const &b, T const &c, T const &d) |
max( a, b, c, d ) More... | |
template<typename T > | |
T const & | max (T const &a, T const &b, T const &c, T const &d, T const &e) |
max( a, b, c, d, e ) More... | |
template<typename T > | |
T const & | max (T const &a, T const &b, T const &c, T const &d, T const &e, T const &f) |
max( a, b, c, d, e, f ) More... | |
template<typename T > | |
T | square (T const &x) |
square( x ) == x^2 More... | |
template<typename T > | |
T | cube (T const &x) |
cube( x ) == x^3 More... | |
template<typename T > | |
int | sign (T const &x) |
sign( x ) More... | |
template<typename S , typename T > | |
T | sign_transfered (S const &sigma, T const &x) |
Sign transfered value. More... | |
template<typename T > | |
T | abs_difference (T const &a, T const &b) |
Absolute difference. More... | |
template<typename R , typename T > | |
R | nearest (T const &x) |
nearest< R >( x ): Nearest R More... | |
template<typename T > | |
std::size_t | nearest_size (T const &x) |
nearest_size( x ): Nearest std::size_t More... | |
template<typename T > | |
SSize | nearest_ssize (T const &x) |
nearest_ssize( x ): Nearest SSize More... | |
template<typename T > | |
int | nearest_int (T const &x) |
nearest_int( x ): Nearest int More... | |
template<typename T > | |
int | nint (T const &x) |
nint( x ): Nearest int More... | |
template<typename T > | |
T | mod (T const &x, T const &y) |
x(mod y) computational modulo returning magnitude < | y | and sign of x More... | |
template<typename T > | |
T | modulo (T const &x, T const &y) |
x(mod y) mathematical modulo returning magnitude < | y | and sign of y More... | |
template<typename T > | |
T | remainder (T const &x, T const &y) |
Remainder of x with respect to division by y that is of smallest magnitude. More... | |
template<typename T > | |
T | fast_remainder (T const &x, T const &y) |
Remainder of x with respect to division by y that is of smallest magnitude. More... | |
template<typename T , typename S > | |
T | remainder_conversion (T const &t, S &s) |
Remainder and result of conversion to a different type. More... | |
template<typename T > | |
T | gcd (T const &m, T const &n) |
Greatest common divisor. More... | |
template<typename T > | |
bool | eq_tol (T const &x, T const &y, T const &r_tol, T const &a_tol) |
Equal within specified relative and absolute tolerances? More... | |
template<typename T > | |
bool | lt_tol (T const &x, T const &y, T const &r_tol, T const &a_tol) |
Less than within specified relative and absolute tolerances? More... | |
template<typename T > | |
bool | le_tol (T const &x, T const &y, T const &r_tol, T const &a_tol) |
Less than or equal within specified relative and absolute tolerances? More... | |
template<typename T > | |
bool | ge_tol (T const &x, T const &y, T const &r_tol, T const &a_tol) |
Greater than or equal within specified relative and absolute tolerances? More... | |
template<typename T > | |
bool | gt_tol (T const &x, T const &y, T const &r_tol, T const &a_tol) |
Greater than within specified relative and absolute tolerances? More... | |
template<typename T > | |
T | factorial (T const &N) |
Calculate the value of N!. More... | |
template<typename T > | |
xyzVector< T > | first_principal_component (utility::vector1< xyzVector< T > > const &coords) |
return the first principal component of the given set of points More... | |
template<typename T > | |
xyzMatrix< T > | principal_components (utility::vector1< xyzVector< T > > const &coords) |
return a matrix containing the first 3 principal components of the given set of points. Matrix columns are principal components, first column is first component, etc. More... | |
template<typename T > | |
xyzVector< T > | principal_component_eigenvalues (utility::vector1< xyzVector< T > > const &coords) |
return a vector containing the eigenvalues corresponding to the first 3 principal components of the given set of points. More... | |
template<typename T > | |
std::pair< xyzMatrix< T > , xyzVector< T > > | principal_components_and_eigenvalues (utility::vector1< xyzVector< T > > const &coords) |
return a pair containing a matrix of the first 3 principal components and a vector of the corresponding eigenvalues of the given set of points. More... | |
std::pair< utility::vector1 < utility::vector1< Real > >, utility::vector1< Real > > | principal_components_and_eigenvalues_ndimensions (utility::vector1< utility::vector1< Real > > const &coords, bool const shift_center) |
Return a pair containing a matrix (vector of vectors) of all of the principal components and a vector of the corresponding eigenvalues of the given set of points in n-dimensional space. More... | |
ostream & | operator<< (ostream &out, const Polynomial_1d &poly) |
void | read_probabilities_or_die (const std::string &filename, utility::vector1< double > *probs) |
Loads normalized, per-residue probabilities from filename, storing the result in probs. Assumes line i holds the probability of sampling residue i. There must be 1 line for each residue in the pose on which this data will be used. More... | |
void | print_probabilities (const utility::vector1< double > &probs, std::ostream &out) |
Writes probs to the specified ostream. More... | |
template<class InputIterator > | |
double | sum (InputIterator first, InputIterator last) |
Returns the sum of all elements on the range [first, last) More... | |
template<class InputIterator > | |
void | normalize (InputIterator first, InputIterator last) |
Normalizes elements on the range [first, last) More... | |
template<class RandomAccessIterator > | |
void | cumulative (RandomAccessIterator first, RandomAccessIterator last) |
Converts pdf to cdf. More... | |
template<class ForwardIterator > | |
void | product (ForwardIterator probs1_first, ForwardIterator probs1_last, ForwardIterator probs2_first, ForwardIterator probs2_last) |
Multiplies two probability vectors with one another. Probability vectors are assumed to have equal lengths. More... | |
template<typename T > | |
std::ostream & | operator<< (std::ostream &stream, Quaternion< T > const &q) |
stream << Quaternion output operator More... | |
template<typename T > | |
std::istream & | operator>> (std::istream &stream, Quaternion< T > &q) |
stream >> Quaternion input operator More... | |
template<typename T > | |
T | sec (T const &x) |
Secant. More... | |
template<typename T > | |
T | csc (T const &x) |
Cosecant. More... | |
template<typename T > | |
T | cot (T const &x) |
Cotangent. More... | |
template<typename T > | |
bool | in_sin_cos_range (T const &x, T const &tol=T(.001)) |
Is a sine or cosine value within a specified tolerance of the valid [-1,1] range? More... | |
template<typename T > | |
T | sin_cos_range (T const &x, T const &tol=T(.001)) |
Adjust a sine or cosine value to the valid [-1,1] range if within a specified tolerance or exit with an error. More... | |
template<typename T > | |
T | arccos (T const x) |
like std::acos but with range checking More... | |
double | urs_norm4 (double a, double b, double c, double d) |
platform::Real | urs_R2ang (numeric::xyzMatrix< Real > R) |
numeric::Real | median (utility::vector1< numeric::Real > const &values) |
Returns the median from a vector1 of Real values. More... | |
numeric::Real | mean (utility::vector1< numeric::Real > const &values) |
Real & | access_Real_MathNTensor (MathNTensorBaseOP< Real > tensorbase, utility::vector1< Size > const &position) |
Utility function to access an entry in a MathNTensor of arbitrary dimensionality unknown at compile time, given a MathNTensorBaseOP. More... | |
Real const & | const_access_Real_MathNTensor (MathNTensorBaseCOP< Real > tensorbase, utility::vector1< Size > const &position) |
Utility function to access an entry in a MathNTensor of arbitrary dimensionality unknown at compile time, given a MathNTensorBaseCOP. More... | |
Size | get_Real_MathNTensor_dimension_size (MathNTensorBaseCOP< Real > tensorbase, Size const dimension_index) |
Given a MathNTensorBaseCOP, get the size along one dimension. More... | |
template<typename Number > | |
Number | clamp (Number value, Number lower_bound, Number upper_bound) |
Clamps to the closed interval [lower_bound, upper_bound]. Templated type must implement operator<. More... | |
double | log (double x, double base) |
Computes log(x) in the given base. More... | |
bool | equal_by_epsilon (numeric::Real value1, numeric::Real value2, numeric::Real epsilon) |
are two Real values are equal up to some epsilon More... | |
template<typename T > | |
T | max (utility::vector1< T > const &values) |
template<typename T > | |
T | min (utility::vector1< T > const &values) |
Real | boltzmann_accept_probability (Real const score_before, Real const score_after, Real const temperature) |
Calculates the acceptance probability of a given score-change at the given temperature, generally used in simulated annealing algorithms. Returns a value in the range (0-1). More... | |
template<typename T > | |
T | find_nearest_value (typename utility::vector1< T > const &input_list, T key, platform::Size min_index, platform::Size max_index) |
recursive binary search that finds the value closest to key. Call find_nearest_value(input_list,value) instead. It's the driver function for this function. This fails miserably (and silently!) on a non-sorted vector, so don't do that!. More... | |
template<typename T > | |
T | find_nearest_value (typename utility::vector1< T > const &input_list, T key) |
given a vector and an input value, return the value in the vector that is closest to the input This is a wrapper for find_nearest_value(input_list,key,min,max) and insures that you're sorted. More... | |
template<class F , class V > | |
std::ostream & | operator<< (std::ostream &out, VoxelArray< F, V > const &v) |
template<typename T > | |
T | wrap_2pi (T const &angle) |
Wrap the given angle in the range [0, 2 * pi). More... | |
template<typename T > | |
T | wrap_pi (T const &angle) |
Wrap the given angle in the range [-pi, pi). More... | |
template<typename T > | |
T | wrap_360 (T const &angle) |
Wrap the given angle in the range [0, 360). More... | |
template<typename T > | |
T | wrap_180 (T const &angle) |
Wrap the given angle in the range [-180, 180). More... | |
template<typename T > | |
xyzVector< T > | operator* (xyzMatrix< T > const &m, xyzVector< T > const &v) |
template<typename T > | |
xyzVector< T > | product (xyzMatrix< T > const &m, xyzVector< T > const &v) |
xyzMatrix * xyzVector product More... | |
template<typename T > | |
xyzVector< T > & | inplace_product (xyzMatrix< T > const &m, xyzVector< T > &v) |
xyzMatrix * xyzVector in-place product More... | |
template<typename T > | |
xyzVector< T > | transpose_product (xyzMatrix< T > const &m, xyzVector< T > const &v) |
xyzMatrix^T * xyzVector product More... | |
template<typename T > | |
xyzVector< T > & | inplace_transpose_product (xyzMatrix< T > const &m, xyzVector< T > &v) |
xyzMatrix^T * xyzVector in-place transpose product More... | |
template<typename T > | |
xyzMatrix< T > | outer_product (xyzVector< T > const &a, xyzVector< T > const &b) |
xyzVector xyzVector outer product More... | |
template<typename T > | |
xyzMatrix< T > | inverse (xyzMatrix< T > const &a) |
template<typename T > | |
xyzMatrix< T > | projection_matrix (xyzVector< T > const &v) |
geometric center More... | |
template<typename T > | |
void | dihedral_radians (xyzVector< T > const &p1, xyzVector< T > const &p2, xyzVector< T > const &p3, xyzVector< T > const &p4, T &angle) |
Dihedral (torsion) angle in radians: angle value passed. More... | |
template<typename T > | |
T | dihedral_radians (xyzVector< T > const &p1, xyzVector< T > const &p2, xyzVector< T > const &p3, xyzVector< T > const &p4) |
Dihedral (torsion) angle in radians: angle value returned. More... | |
template<typename T > | |
void | dihedral_degrees (xyzVector< T > const &p1, xyzVector< T > const &p2, xyzVector< T > const &p3, xyzVector< T > const &p4, T &angle) |
Dihedral (torsion) angle in degrees: angle value passed. More... | |
template<typename T > | |
T | dihedral_degrees (xyzVector< T > const &p1, xyzVector< T > const &p2, xyzVector< T > const &p3, xyzVector< T > const &p4) |
Dihedral (torsion) angle in degrees: angle value returned. More... | |
template<typename T > | |
void | dihedral (xyzVector< T > const &p1, xyzVector< T > const &p2, xyzVector< T > const &p3, xyzVector< T > const &p4, T &angle) |
Dihedral (torsion) angle in degrees: angle value passed. More... | |
template<typename T > | |
T | dihedral (xyzVector< T > const &p1, xyzVector< T > const &p2, xyzVector< T > const &p3, xyzVector< T > const &p4) |
Dihedral (torsion) angle in degrees: angle value returned. More... | |
template<typename T > | |
xyzMatrix< T > | rotation_matrix (xyzVector< T > const &axis, T const &theta) |
Rotation matrix for rotation about an axis by an angle in radians. More... | |
template<typename T > | |
xyzVector< T > | rotation_axis (xyzMatrix< T > const &R, T &theta) |
Transformation from rotation matrix to helical axis of rotation. More... | |
template<typename T > | |
xyzVector< T > | eigenvalue_jacobi (xyzMatrix< T > const &a, T const &tol) |
Classic Jacobi algorithm for the eigenvalues of a real symmetric matrix. More... | |
template<typename T > | |
xyzVector< T > | eigenvector_jacobi (xyzMatrix< T > const &a, T const &tol, xyzMatrix< T > &J) |
Classic Jacobi algorithm for the eigenvalues and eigenvectors of a real symmetric matrix. More... | |
template<typename T > | |
void | jacobi_rotation (xyzMatrix< T > const &m, int const i, int const j, xyzMatrix< T > &r) |
Jacobi rotation. More... | |
template<typename T > | |
sphericalVector< T > | xyz_to_spherical (xyzVector< T > const &xyz) |
template<typename T > | |
xyzVector< T > | spherical_to_xyz (sphericalVector< T > const &spherical) |
template<typename T > | |
xyzVector< T > | closest_point_on_line (xyzVector< T > const &p1, xyzVector< T > const &p2, xyzVector< T > const &q) |
xyzMatrix * xyzVector More... | |
template<typename T > | |
xyzVector< T > | center_of_mass (utility::vector1< xyzVector< T > > const &coords) |
calculate center of mass for coordinates More... | |
template<typename T > | |
void | angle_radians (xyzVector< T > const &p1, xyzVector< T > const &p2, xyzVector< T > const &p3, T &angle) |
Plane angle in radians: angle value passed. More... | |
template<typename T > | |
T | angle_radians (xyzVector< T > const &p1, xyzVector< T > const &p2, xyzVector< T > const &p3) |
Plane angle in radians: angle value returned. More... | |
double | angle_radians_double (xyzVector< double > const &p1, xyzVector< double > const &p2, xyzVector< double > const &p3) |
template<typename T > | |
T | angle_degrees (xyzVector< T > const &p1, xyzVector< T > const &p2, xyzVector< T > const &p3) |
Plane angle in degrees: angle value returned. More... | |
double | angle_degrees_double (xyzVector< double > const &p1, xyzVector< double > const &p2, xyzVector< double > const &p3) |
template<typename T > | |
T | angle_radians (xyzVector< T > const &p1, xyzVector< T > const &p2, xyzVector< T > const &p3, xyzVector< T > const &p4) |
Angle between two vectors in radians. More... | |
double | angle_radians_double (xyzVector< double > const &p1, xyzVector< double > const &p2, xyzVector< double > const &p3, xyzVector< double > const &p4) |
template<typename T > | |
T | angle_degrees (xyzVector< T > const &p1, xyzVector< T > const &p2, xyzVector< T > const &p3, xyzVector< T > const &p4) |
Angle between two vectors in radians. More... | |
double | angle_degrees_double (xyzVector< double > const &p1, xyzVector< double > const &p2, xyzVector< double > const &p3, xyzVector< double > const &p4) |
void | dihedral_radians_double (xyzVector< double > const &p1, xyzVector< double > const &p2, xyzVector< double > const &p3, xyzVector< double > const &p4, double &angle) |
double | dihedral_radians_double (xyzVector< double > const &p1, xyzVector< double > const &p2, xyzVector< double > const &p3, xyzVector< double > const &p4) |
void | dihedral_degrees_double (xyzVector< double > const &p1, xyzVector< double > const &p2, xyzVector< double > const &p3, xyzVector< double > const &p4, double &angle) |
double | dihedral_degrees_double (xyzVector< double > const &p1, xyzVector< double > const &p2, xyzVector< double > const &p3, xyzVector< double > const &p4) |
void | dihedral_double (xyzVector< double > const &p1, xyzVector< double > const &p2, xyzVector< double > const &p3, xyzVector< double > const &p4, double &angle) |
double | dihedral_double (xyzVector< double > const &p1, xyzVector< double > const &p2, xyzVector< double > const &p3, xyzVector< double > const &p4) |
template<typename T > | |
xyzMatrix< T > | rotation_matrix (xyzVector< T > const &axis_angle) |
template<typename T > | |
xyzMatrix< T > | rotation_matrix_radians (xyzVector< T > const &axis, T const &theta) |
Rotation matrix for rotation about an axis by an angle in radians. More... | |
template<typename T > | |
xyzMatrix< T > | rotation_matrix_degrees (xyzVector< T > const &axis, T const &theta) |
Rotation matrix for rotation about an axis by an angle in degrees. More... | |
template<typename T > | |
xyzMatrix< T > | x_rotation_matrix (T const &theta) |
Rotation matrix for rotation about the x axis by an angle in radians. More... | |
template<typename T > | |
xyzMatrix< T > | x_rotation_matrix_radians (T const &theta) |
Rotation matrix for rotation about the x axis by an angle in radians. More... | |
template<typename T > | |
xyzMatrix< T > | x_rotation_matrix_degrees (T const &theta) |
Rotation matrix for rotation about the x axis by an angle in degrees. More... | |
template<typename T > | |
xyzMatrix< T > | y_rotation_matrix (T const &theta) |
Rotation matrix for rotation about the y axis by an angle in radians. More... | |
template<typename T > | |
xyzMatrix< T > | y_rotation_matrix_radians (T const &theta) |
Rotation matrix for rotation about the y axis by an angle in radians. More... | |
template<typename T > | |
xyzMatrix< T > | y_rotation_matrix_degrees (T const &theta) |
Rotation matrix for rotation about the y axis by an angle in degrees. More... | |
template<typename T > | |
xyzMatrix< T > | z_rotation_matrix (T const &theta) |
Rotation matrix for rotation about the z axis by an angle in radians. More... | |
template<typename T > | |
xyzMatrix< T > | z_rotation_matrix_radians (T const &theta) |
Rotation matrix for rotation about the z axis by an angle in radians. More... | |
template<typename T > | |
xyzMatrix< T > | z_rotation_matrix_degrees (T const &theta) |
Rotation matrix for rotation about the z axis by an angle in degrees. More... | |
template<typename T > | |
xyzMatrix< T > | alignVectorSets (xyzVector< T > A1, xyzVector< T > B1, xyzVector< T > A2, xyzVector< T > B2) |
Helper function to find the rotation to optimally transform the vectors A1-B1 to vectors A2-B2. More... | |
template<typename T > | |
T | rotation_angle (xyzMatrix< T > const &R) |
Transformation from rotation matrix to magnitude of helical rotation. More... | |
template<typename T > | |
xyzVector< T > | rotation_axis_angle (xyzMatrix< T > const &R) |
Transformation from rotation matrix to compact axis-angle representation. More... | |
template<typename T > | |
xyzVector< T > | comma_seperated_string_to_xyz (std::string triplet) |
convert a string of comma separated values "0.2,0.4,0.3" to an xyzVector More... | |
template<typename T > | |
ObjexxFCL::FArray2D< T > | vector_of_xyzvectors_to_FArray (utility::vector1< xyzVector< T > > const &input) |
convert a vector1 of xyzVectors to an FArray2D More... | |
template<typename T > | |
utility::vector1< xyzVector< T > > | FArray_to_vector_of_xyzvectors (ObjexxFCL::FArray2D< T > const &input) |
convert an FArray2D to a vector of xyzVectors More... | |
template<typename T > | |
numeric::xyzMatrix< T > | FArray_to_xyzmatrix (ObjexxFCL::FArray2D< T > const &input) |
convert a 3x3 FArray 2D to an xyzMatrix More... | |
template<typename T > | |
ObjexxFCL::FArray2D< T > | xyzmatrix_to_FArray (numeric::xyzMatrix< T > const &input) |
convert an xyzMatrix to a 3x3 FArray 2D More... | |
template<typename T > | |
void | angles_between_0_180 (xyzVector< T > &angles) |
template<typename T > | |
xyzMatrix< T > | rotation_matrix_from_euler_angles_ZYZ (xyzVector< T > const &angles) |
template<typename T > | |
xyzMatrix< T > | rotation_matrix_from_euler_angles_ZXZ (xyzVector< T > const &angles) |
template<typename T > | |
xyzMatrix< T > | rotation_matrix_from_euler_angles_ZYX (xyzVector< T > const &angles) |
template<typename T > | |
xyzVector< T > | euler_angles_from_rotation_matrix_ZYZ (xyzMatrix< T > const &rotM) |
template<typename T > | |
xyzVector< T > | euler_angles_from_rotation_matrix_ZXZ (xyzMatrix< T > const &rotM) |
template<typename T > | |
xyzVector< T > | euler_angles_from_rotation_matrix_ZYX (xyzMatrix< T > const &rotM) |
template<typename T > | |
void | to_json (nlohmann::json &j, const xyzVector< T > &v) |
template<typename T > | |
void | from_json (const nlohmann::json &j, xyzVector< T > &v) |
template<typename T > | |
utility::json_spirit::Value | serialize (xyzVector< T > coords) |
Convert vector to a json_spirit Value. More... | |
template<typename T > | |
xyzVector< T > | deserialize (utility::json_spirit::mArray data) |
template<typename T > | |
xyzMatrix< T > | operator+ (T const &t, xyzMatrix< T > const &m) |
T + xyzMatrix. More... | |
template<typename T > | |
xyzMatrix< T > | operator- (T const &t, xyzMatrix< T > const &m) |
T - xyzMatrix. More... | |
template<typename T > | |
xyzMatrix< T > | operator* (T const &t, xyzMatrix< T > const &m) |
T * xyzMatrix. More... | |
template<typename T > | |
bool | operator== (xyzMatrix< T > const &a, xyzMatrix< T > const &b) |
xyzMatrix == xyzMatrix More... | |
template<typename T > | |
bool | operator!= (xyzMatrix< T > const &a, xyzMatrix< T > const &b) |
xyzMatrix != xyzMatrix More... | |
template<typename T > | |
bool | operator< (xyzMatrix< T > const &a, xyzMatrix< T > const &b) |
xyzMatrix < xyzMatrix More... | |
template<typename T > | |
bool | operator<= (xyzMatrix< T > const &a, xyzMatrix< T > const &b) |
xyzMatrix <= xyzMatrix More... | |
template<typename T > | |
bool | operator>= (xyzMatrix< T > const &a, xyzMatrix< T > const &b) |
xyzMatrix >= xyzMatrix More... | |
template<typename T > | |
bool | operator> (xyzMatrix< T > const &a, xyzMatrix< T > const &b) |
xyzMatrix > xyzMatrix More... | |
template<typename T > | |
bool | operator== (xyzMatrix< T > const &m, T const &t) |
xyzMatrix == T More... | |
template<typename T > | |
bool | operator!= (xyzMatrix< T > const &m, T const &t) |
xyzMatrix != T More... | |
template<typename T > | |
bool | operator< (xyzMatrix< T > const &m, T const &t) |
xyzMatrix < T More... | |
template<typename T > | |
bool | operator<= (xyzMatrix< T > const &m, T const &t) |
xyzMatrix <= T More... | |
template<typename T > | |
bool | operator>= (xyzMatrix< T > const &m, T const &t) |
xyzMatrix >= T More... | |
template<typename T > | |
bool | operator> (xyzMatrix< T > const &m, T const &t) |
xyzMatrix > T More... | |
template<typename T > | |
bool | operator== (T const &t, xyzMatrix< T > const &m) |
T == xyzMatrix. More... | |
template<typename T > | |
bool | operator!= (T const &t, xyzMatrix< T > const &m) |
T != xyzMatrix. More... | |
template<typename T > | |
bool | operator< (T const &t, xyzMatrix< T > const &m) |
T < xyzMatrix. More... | |
template<typename T > | |
bool | operator<= (T const &t, xyzMatrix< T > const &m) |
T <= xyzMatrix. More... | |
template<typename T > | |
bool | operator>= (T const &t, xyzMatrix< T > const &m) |
T >= xyzMatrix. More... | |
template<typename T > | |
bool | operator> (T const &t, xyzMatrix< T > const &m) |
T > xyzMatrix. More... | |
template<typename T > | |
std::ostream & | operator<< (std::ostream &stream, xyzMatrix< T > const &m) |
stream << xyzMatrix output operator More... | |
template<typename T > | |
std::istream & | read_row (std::istream &stream, T &x, T &y, T &z) |
Read an xyzMatrix row from a stream. More... | |
template<typename T > | |
std::istream & | operator>> (std::istream &stream, xyzMatrix< T > &m) |
stream >> xyzMatrix input operator More... | |
template<typename T , class OutputIterator > | |
void | expand_xforms (OutputIterator container, xyzTransform< T > const &G1, xyzTransform< T > const &G2, xyzTransform< T > const &, int N=5, Real r=9e9, xyzVector< T > const &test_point=xyzVector< T >(Real(1.0), Real(3.0), Real(10.0))) |
template<typename T , class OutputIterator > | |
void | expand_xforms (OutputIterator container, xyzTransform< T > const &G1, xyzTransform< T > const &G2, int N=5, Real r=9e9, xyzVector< T > const &test_point=xyzVector< T >(Real(1.0), Real(3.0), Real(10.0))) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &stream, xyzTransform< T > const &m) |
stream << xyzTransform output operator More... | |
template<typename T > | |
std::istream & | operator>> (std::istream &stream, xyzTransform< T > &m) |
stream >> xyzTransform input operator More... | |
template<typename T > | |
xyzTriple< T > | operator+ (xyzTriple< T > const &a, xyzTriple< T > const &b) |
xyzTriple + xyzTriple More... | |
template<typename T > | |
xyzTriple< T > | operator+ (xyzTriple< T > const &v, T const &t) |
xyzTriple + T More... | |
template<typename T > | |
xyzTriple< T > | operator+ (T const &t, xyzTriple< T > const &v) |
T + xyzTriple. More... | |
template<typename T > | |
xyzTriple< T > | operator- (xyzTriple< T > const &a, xyzTriple< T > const &b) |
xyzTriple - xyzTriple More... | |
template<typename T > | |
xyzTriple< T > | operator- (xyzTriple< T > const &v, T const &t) |
xyzTriple - T More... | |
template<typename T > | |
xyzTriple< T > | operator- (T const &t, xyzTriple< T > const &v) |
T - xyzTriple. More... | |
template<typename T > | |
xyzTriple< T > | operator* (xyzTriple< T > const &v, T const &t) |
xyzTriple * T More... | |
template<typename T > | |
xyzTriple< T > | operator* (T const &t, xyzTriple< T > const &v) |
T * xyzTriple. More... | |
template<typename T > | |
xyzTriple< T > | operator/ (xyzTriple< T > const &v, T const &t) |
xyzTriple / T More... | |
template<typename T > | |
void | add (xyzTriple< T > const &a, xyzTriple< T > const &b, xyzTriple< T > &r) |
Add: xyzTriple + xyzTriple. More... | |
template<typename T > | |
void | add (xyzTriple< T > const &v, T const &t, xyzTriple< T > &r) |
Add: xyzTriple + T. More... | |
template<typename T > | |
void | add (T const &t, xyzTriple< T > const &v, xyzTriple< T > &r) |
Add: T + xyzTriple. More... | |
template<typename T > | |
void | subtract (xyzTriple< T > const &a, xyzTriple< T > const &b, xyzTriple< T > &r) |
Subtract: xyzTriple - xyzTriple. More... | |
template<typename T > | |
void | subtract (xyzTriple< T > const &v, T const &t, xyzTriple< T > &r) |
Subtract: xyzTriple - T. More... | |
template<typename T > | |
void | subtract (T const &t, xyzTriple< T > const &v, xyzTriple< T > &r) |
Subtract: T - xyzTriple. More... | |
template<typename T > | |
void | multiply (xyzTriple< T > const &v, T const &t, xyzTriple< T > &r) |
Multiply: xyzTriple * T. More... | |
template<typename T > | |
void | multiply (T const &t, xyzTriple< T > const &v, xyzTriple< T > &r) |
Multiply: T * xyzTriple. More... | |
template<typename T > | |
void | divide (xyzTriple< T > const &v, T const &t, xyzTriple< T > &r) |
Divide: xyzTriple / T. More... | |
template<typename T > | |
xyzTriple< T > | min (xyzTriple< T > const &a, xyzTriple< T > const &b) |
xyzTriple with min coordinates of two xyzTriples More... | |
template<typename T > | |
xyzTriple< T > | max (xyzTriple< T > const &a, xyzTriple< T > const &b) |
xyzTriple with max coordinates of two xyzTriples More... | |
template<typename T > | |
T | distance (xyzTriple< T > const &a, xyzTriple< T > const &b) |
Distance. More... | |
template<typename T > | |
T | distance_squared (xyzTriple< T > const &a, xyzTriple< T > const &b) |
Distance squared. More... | |
template<typename T > | |
T | dot (xyzTriple< T > const &a, xyzTriple< T > const &b) |
Dot product. More... | |
template<typename T > | |
T | dot_product (xyzTriple< T > const &a, xyzTriple< T > const &b) |
Dot product. More... | |
template<typename T > | |
T | inner_product (xyzTriple< T > const &a, xyzTriple< T > const &b) |
Inner product ( == dot product ) More... | |
template<typename T > | |
xyzTriple< T > | cross (xyzTriple< T > const &a, xyzTriple< T > const &b) |
Cross product. More... | |
template<typename T > | |
xyzTriple< T > | cross_product (xyzTriple< T > const &a, xyzTriple< T > const &b) |
Cross product. More... | |
template<typename T > | |
void | cross (xyzTriple< T > const &a, xyzTriple< T > const &b, xyzTriple< T > &c) |
Cross product: Return via argument (slightly faster) More... | |
template<typename T > | |
void | cross_product (xyzTriple< T > const &a, xyzTriple< T > const &b, xyzTriple< T > &c) |
Cross product: Return via argument (slightly faster) More... | |
template<typename T > | |
xyzTriple< T > | midpoint (xyzTriple< T > const &a, xyzTriple< T > const &b) |
Midpoint of 2 xyzTriples. More... | |
template<typename T > | |
void | midpoint (xyzTriple< T > const &a, xyzTriple< T > const &b, xyzTriple< T > &m) |
Midpoint of 2 xyzTriples: Return via argument (slightly faster) More... | |
template<typename T > | |
xyzTriple< T > | center (xyzTriple< T > const &a, xyzTriple< T > const &b) |
Center of 2 xyzTriples. More... | |
template<typename T > | |
void | center (xyzTriple< T > const &a, xyzTriple< T > const &b, xyzTriple< T > &m) |
Center of 2 xyzTriples: Return via argument (slightly faster) More... | |
template<typename T > | |
xyzTriple< T > | center (xyzTriple< T > const &a, xyzTriple< T > const &b, xyzTriple< T > const &c) |
Center of 3 xyzTriples. More... | |
template<typename T > | |
void | center (xyzTriple< T > const &a, xyzTriple< T > const &b, xyzTriple< T > const &c, xyzTriple< T > &m) |
Center of 3 xyzTriples: Return via argument (slightly faster) More... | |
template<typename T > | |
xyzTriple< T > | center (xyzTriple< T > const &a, xyzTriple< T > const &b, xyzTriple< T > const &c, xyzTriple< T > const &d) |
Center of 4 xyzTriples. More... | |
template<typename T > | |
void | center (xyzTriple< T > const &a, xyzTriple< T > const &b, xyzTriple< T > const &c, xyzTriple< T > const &d, xyzTriple< T > &m) |
Center of 4 xyzTriples: Return via argument (slightly faster) More... | |
template<typename T > | |
T | angle_of (xyzTriple< T > const &a, xyzTriple< T > const &b) |
Angle between two vectors (in radians on [ 0, pi ]) More... | |
template<typename T > | |
T | angle_of (xyzTriple< T > const &a, xyzTriple< T > const &b, xyzTriple< T > const &c) |
Angle formed by three consecutive points (in radians on [ 0, pi ]) More... | |
template<typename T > | |
T | cos_of (xyzTriple< T > const &a, xyzTriple< T > const &b) |
Cosine of angle between two vectors. More... | |
template<typename T > | |
T | cos_of (xyzTriple< T > const &a, xyzTriple< T > const &b, xyzTriple< T > const &c) |
Cosine of angle formed by three consecutive points. More... | |
template<typename T > | |
T | sin_of (xyzTriple< T > const &a, xyzTriple< T > const &b) |
Sine of angle between two vectors. More... | |
template<typename T > | |
T | sin_of (xyzTriple< T > const &a, xyzTriple< T > const &b, xyzTriple< T > const &c) |
Sine of angle formed by three consecutive points. More... | |
template<typename T > | |
bool | operator== (xyzTriple< T > const &a, xyzTriple< T > const &b) |
xyzTriple == xyzTriple More... | |
template<typename T > | |
bool | operator!= (xyzTriple< T > const &a, xyzTriple< T > const &b) |
xyzTriple != xyzTriple More... | |
template<typename T > | |
bool | operator< (xyzTriple< T > const &a, xyzTriple< T > const &b) |
xyzTriple < xyzTriple More... | |
template<typename T > | |
bool | operator<= (xyzTriple< T > const &a, xyzTriple< T > const &b) |
xyzTriple <= xyzTriple More... | |
template<typename T > | |
bool | operator>= (xyzTriple< T > const &a, xyzTriple< T > const &b) |
xyzTriple >= xyzTriple More... | |
template<typename T > | |
bool | operator> (xyzTriple< T > const &a, xyzTriple< T > const &b) |
xyzTriple > xyzTriple More... | |
template<typename T > | |
bool | operator== (xyzTriple< T > const &v, T const &t) |
xyzTriple == T More... | |
template<typename T > | |
bool | operator!= (xyzTriple< T > const &v, T const &t) |
xyzTriple != T More... | |
template<typename T > | |
bool | operator< (xyzTriple< T > const &v, T const &t) |
xyzTriple < T More... | |
template<typename T > | |
bool | operator<= (xyzTriple< T > const &v, T const &t) |
xyzTriple <= T More... | |
template<typename T > | |
bool | operator>= (xyzTriple< T > const &v, T const &t) |
xyzTriple >= T More... | |
template<typename T > | |
bool | operator> (xyzTriple< T > const &v, T const &t) |
xyzTriple > T More... | |
template<typename T > | |
bool | operator== (T const &t, xyzTriple< T > const &v) |
T == xyzTriple. More... | |
template<typename T > | |
bool | operator!= (T const &t, xyzTriple< T > const &v) |
T != xyzTriple. More... | |
template<typename T > | |
bool | operator< (T const &t, xyzTriple< T > const &v) |
T < xyzTriple. More... | |
template<typename T > | |
bool | operator<= (T const &t, xyzTriple< T > const &v) |
T <= xyzTriple. More... | |
template<typename T > | |
bool | operator>= (T const &t, xyzTriple< T > const &v) |
T >= xyzTriple. More... | |
template<typename T > | |
bool | operator> (T const &t, xyzTriple< T > const &v) |
T > xyzTriple. More... | |
template<typename T > | |
bool | equal_length (xyzTriple< T > const &a, xyzTriple< T > const &b) |
Equal length? More... | |
template<typename T > | |
bool | not_equal_length (xyzTriple< T > const &a, xyzTriple< T > const &b) |
Not equal length? More... | |
template<typename U > | |
U | dot (xyzTriple< U > const &a, xyzTriple< U > const &b) |
Dot product. More... | |
template<typename U > | |
U | dot_product (xyzTriple< U > const &a, xyzTriple< U > const &b) |
Dot product. More... | |
template<typename U > | |
U | inner_product (xyzTriple< U > const &a, xyzTriple< U > const &b) |
Inner product ( == dot product ) More... | |
template<typename U > | |
bool | equal_length (xyzTriple< U > const &a, xyzTriple< U > const &b) |
Equal length? More... | |
template<typename U > | |
xyzTriple< U > | cross (xyzTriple< U > const &a, xyzTriple< U > const &b) |
Cross product. More... | |
template<typename U > | |
xyzTriple< U > | cross_product (xyzTriple< U > const &a, xyzTriple< U > const &b) |
Cross product. More... | |
template<typename U > | |
void | cross (xyzTriple< U > const &a, xyzTriple< U > const &b, xyzTriple< U > &c) |
Cross product: Return via argument (slightly faster) More... | |
template<typename U > | |
void | cross_product (xyzTriple< U > const &a, xyzTriple< U > const &b, xyzTriple< U > &c) |
Cross product: Return via argument (slightly faster) More... | |
template<typename U > | |
xyzTriple< U > | midpoint (xyzTriple< U > const &a, xyzTriple< U > const &b) |
Midpoint of 2 xyzTriples. More... | |
template<typename U > | |
void | midpoint (xyzTriple< U > const &a, xyzTriple< U > const &b, xyzTriple< U > &m) |
Midpoint of 2 xyzTriples: Return via argument (slightly faster) More... | |
template<typename U > | |
xyzTriple< U > | center (xyzTriple< U > const &a, xyzTriple< U > const &b) |
Center of 2 xyzTriples. More... | |
template<typename U > | |
void | center (xyzTriple< U > const &a, xyzTriple< U > const &b, xyzTriple< U > &m) |
Center of 2 xyzTriples: Return via argument (slightly faster) More... | |
template<typename U > | |
xyzTriple< U > | center (xyzTriple< U > const &a, xyzTriple< U > const &b, xyzTriple< U > const &c) |
Center of 3 xyzTriples. More... | |
template<typename U > | |
void | center (xyzTriple< U > const &a, xyzTriple< U > const &b, xyzTriple< U > const &c, xyzTriple< U > &m) |
Center of 3 xyzTriples: Return via argument (slightly faster) More... | |
template<typename U > | |
xyzTriple< U > | center (xyzTriple< U > const &a, xyzTriple< U > const &b, xyzTriple< U > const &c, xyzTriple< U > const &d) |
Center of 4 xyzTriples. More... | |
template<typename U > | |
void | center (xyzTriple< U > const &a, xyzTriple< U > const &b, xyzTriple< U > const &c, xyzTriple< U > const &d, xyzTriple< U > &m) |
Center of 4 xyzTriples: Return via argument (slightly faster) More... | |
template<typename U > | |
U | angle_of (xyzTriple< U > const &a, xyzTriple< U > const &b) |
Angle between two vectors (in radians on [ 0, pi ]) More... | |
template<typename U > | |
U | angle_of (xyzTriple< U > const &a, xyzTriple< U > const &b, xyzTriple< U > const &c) |
Angle formed by three consecutive points (in radians on [ 0, pi ]) More... | |
template<typename U > | |
U | cos_of (xyzTriple< U > const &a, xyzTriple< U > const &b) |
Cosine of angle between two vectors. More... | |
template<typename U > | |
U | cos_of (xyzTriple< U > const &a, xyzTriple< U > const &b, xyzTriple< U > const &c) |
Cosine of angle formed by three consecutive points. More... | |
template<typename U > | |
U | sin_of (xyzTriple< U > const &a, xyzTriple< U > const &b) |
Sine of angle between two vectors. More... | |
template<typename U > | |
U | sin_of (xyzTriple< U > const &a, xyzTriple< U > const &b, xyzTriple< U > const &c) |
Sine of angle formed by three consecutive points. More... | |
template<typename U > | |
U | distance_squared (xyzTriple< U > const &a, xyzTriple< U > const &b) |
Distance squared. More... | |
template<typename U > | |
bool | not_equal_length (xyzTriple< U > const &a, xyzTriple< U > const &b) |
Not equal length? More... | |
template<typename U > | |
void | add (xyzTriple< U > const &a, xyzTriple< U > const &b, xyzTriple< U > &r) |
Add: xyzTriple + xyzTriple. More... | |
template<typename U > | |
void | add (xyzTriple< U > const &v, U const &t, xyzTriple< U > &r) |
Add: xyzTriple + Value. More... | |
template<typename U > | |
void | add (U const &t, xyzTriple< U > const &v, xyzTriple< U > &r) |
Add: Value + xyzTriple. More... | |
template<typename U > | |
void | subtract (xyzTriple< U > const &a, xyzTriple< U > const &b, xyzTriple< U > &r) |
Subtract: xyzTriple - xyzTriple. More... | |
template<typename U > | |
void | subtract (xyzTriple< U > const &v, U const &t, xyzTriple< U > &r) |
Subtract: xyzTriple - Value. More... | |
template<typename U > | |
void | subtract (U const &t, xyzTriple< U > const &v, xyzTriple< U > &r) |
Subtract: Value - xyzTriple. More... | |
template<typename U > | |
void | multiply (xyzTriple< U > const &v, U const &t, xyzTriple< U > &r) |
Multiply: xyzTriple * Value. More... | |
template<typename U > | |
void | multiply (U const &t, xyzTriple< U > const &v, xyzTriple< U > &r) |
Multiply: Value * xyzTriple. More... | |
template<typename U > | |
void | divide (xyzTriple< U > const &v, U const &t, xyzTriple< U > &r) |
Divide: xyzTriple / Value. More... | |
template<typename U > | |
xyzTriple< U > | min (xyzTriple< U > const &a, xyzTriple< U > const &b) |
xyzTriple with min coordinates of two xyzTriples More... | |
template<typename U > | |
xyzTriple< U > | max (xyzTriple< U > const &a, xyzTriple< U > const &b) |
xyzTriple with max coordinates of two xyzTriples More... | |
template<typename U > | |
U | distance (xyzTriple< U > const &a, xyzTriple< U > const &b) |
Distance. More... | |
template<typename T > | |
std::ostream & | operator<< (std::ostream &stream, xyzTriple< T > const &v) |
stream << xyzTriple output operator More... | |
template<typename T > | |
std::istream & | operator>> (std::istream &stream, xyzTriple< T > &v) |
stream >> xyzTriple input operator More... | |
template<typename T > | |
platform::Size | hash_value (xyzVector< T > const &v) |
template<typename T > | |
xyzVector< T > | operator+ (xyzVector< T > const &a, xyzVector< T > const &b) |
xyzVector + xyzVector More... | |
template<typename T > | |
xyzVector< T > | operator+ (xyzVector< T > const &v, T const &t) |
xyzVector + T More... | |
template<typename T > | |
xyzVector< T > | operator+ (T const &t, xyzVector< T > const &v) |
T + xyzVector. More... | |
template<typename T > | |
xyzVector< T > | operator- (xyzVector< T > const &a, xyzVector< T > const &b) |
xyzVector - xyzVector More... | |
template<typename T > | |
xyzVector< T > | operator- (xyzVector< T > const &v, T const &t) |
xyzVector - T More... | |
template<typename T > | |
xyzVector< T > | operator- (T const &t, xyzVector< T > const &v) |
T - xyzVector. More... | |
template<typename T > | |
xyzVector< T > | operator* (xyzVector< T > const &v, T const &t) |
xyzVector * T More... | |
template<typename T > | |
xyzVector< T > | operator* (T const &t, xyzVector< T > const &v) |
T * xyzVector. More... | |
template<typename T > | |
xyzVector< T > | operator/ (xyzVector< T > const &v, T const &t) |
xyzVector / T More... | |
template<typename T > | |
void | add (xyzVector< T > const &a, xyzVector< T > const &b, xyzVector< T > &r) |
Add: xyzVector + xyzVector. More... | |
template<typename T > | |
void | add (xyzVector< T > const &v, T const &t, xyzVector< T > &r) |
Add: xyzVector + T. More... | |
template<typename T > | |
void | add (T const &t, xyzVector< T > const &v, xyzVector< T > &r) |
Add: T + xyzVector. More... | |
template<typename T > | |
void | subtract (xyzVector< T > const &a, xyzVector< T > const &b, xyzVector< T > &r) |
Subtract: xyzVector - xyzVector. More... | |
template<typename T > | |
void | subtract (xyzVector< T > const &v, T const &t, xyzVector< T > &r) |
Subtract: xyzVector - T. More... | |
template<typename T > | |
void | subtract (T const &t, xyzVector< T > const &v, xyzVector< T > &r) |
Subtract: T - xyzVector. More... | |
template<typename T > | |
void | multiply (xyzVector< T > const &v, T const &t, xyzVector< T > &r) |
Multiply: xyzVector * T. More... | |
template<typename T > | |
void | multiply (T const &t, xyzVector< T > const &v, xyzVector< T > &r) |
Multiply: T * xyzVector. More... | |
template<typename T > | |
void | divide (xyzVector< T > const &v, T const &t, xyzVector< T > &r) |
Divide: xyzVector / T. More... | |
template<typename T > | |
xyzVector< T > | min (xyzVector< T > const &a, xyzVector< T > const &b) |
xyzVector with min coordinates of two xyzVectors More... | |
template<typename T > | |
xyzVector< T > | max (xyzVector< T > const &a, xyzVector< T > const &b) |
xyzVector with max coordinates of two xyzVectors More... | |
template<typename T > | |
T | dot (xyzVector< T > const &a, xyzVector< T > const &b) |
Distance. More... | |
template<typename T > | |
T | dot_product (xyzVector< T > const &a, xyzVector< T > const &b) |
Dot product. More... | |
template<typename T > | |
T | inner_product (xyzVector< T > const &a, xyzVector< T > const &b) |
Inner product ( == dot product ) More... | |
template<typename T > | |
xyzVector< T > | cross (xyzVector< T > const &a, xyzVector< T > const &b) |
Cross product. More... | |
template<typename T > | |
xyzVector< T > | cross_product (xyzVector< T > const &a, xyzVector< T > const &b) |
Cross product. More... | |
template<typename T > | |
void | cross (xyzVector< T > const &a, xyzVector< T > const &b, xyzVector< T > &c) |
Cross product: Return via argument (slightly faster) More... | |
template<typename T > | |
void | cross_product (xyzVector< T > const &a, xyzVector< T > const &b, xyzVector< T > &c) |
Cross product: Return via argument (slightly faster) More... | |
template<typename T > | |
xyzVector< T > | midpoint (xyzVector< T > const &a, xyzVector< T > const &b) |
Midpoint of 2 xyzVectors. More... | |
template<typename T > | |
void | midpoint (xyzVector< T > const &a, xyzVector< T > const &b, xyzVector< T > &m) |
Midpoint of 2 xyzVectors: Return via argument (slightly faster) More... | |
template<typename T > | |
xyzVector< T > | center (xyzVector< T > const &a, xyzVector< T > const &b) |
Center of 2 xyzVectors. More... | |
template<typename T > | |
void | center (xyzVector< T > const &a, xyzVector< T > const &b, xyzVector< T > &m) |
Center of 2 xyzVectors: Return via argument (slightly faster) More... | |
template<typename T > | |
xyzVector< T > | center (xyzVector< T > const &a, xyzVector< T > const &b, xyzVector< T > const &c) |
Center of 3 xyzVectors. More... | |
template<typename T > | |
void | center (xyzVector< T > const &a, xyzVector< T > const &b, xyzVector< T > const &c, xyzVector< T > &m) |
Center of 3 xyzVectors: Return via argument (slightly faster) More... | |
template<typename T > | |
xyzVector< T > | center (xyzVector< T > const &a, xyzVector< T > const &b, xyzVector< T > const &c, xyzVector< T > const &d) |
Center of 4 xyzVectors. More... | |
template<typename T > | |
void | center (xyzVector< T > const &a, xyzVector< T > const &b, xyzVector< T > const &c, xyzVector< T > const &d, xyzVector< T > &m) |
Center of 4 xyzVectors: Return via argument (slightly faster) More... | |
template<typename T > | |
T | angle_of (xyzVector< T > const &a, xyzVector< T > const &b) |
Angle between two vectors (in radians on [ 0, pi ]) More... | |
template<typename T > | |
T | angle_of (xyzVector< T > const &a, xyzVector< T > const &b, xyzVector< T > const &c) |
Angle formed by three consecutive points (in radians on [ 0, pi ]) More... | |
template<typename T > | |
T | cos_of (xyzVector< T > const &a, xyzVector< T > const &b) |
Cosine of angle between two vectors. More... | |
template<typename T > | |
T | cos_of (xyzVector< T > const &a, xyzVector< T > const &b, xyzVector< T > const &c) |
Cosine of angle formed by three consecutive points. More... | |
template<typename T > | |
T | sin_of (xyzVector< T > const &a, xyzVector< T > const &b) |
Sine of angle between two vectors. More... | |
template<typename T > | |
T | sin_of (xyzVector< T > const &a, xyzVector< T > const &b, xyzVector< T > const &c) |
Sine of angle formed by three consecutive points. More... | |
template<typename T > | |
bool | operator== (xyzVector< T > const &a, xyzVector< T > const &b) |
xyzVector == xyzVector More... | |
template<typename T > | |
bool | operator!= (xyzVector< T > const &a, xyzVector< T > const &b) |
xyzVector != xyzVector More... | |
template<typename T > | |
bool | operator< (xyzVector< T > const &a, xyzVector< T > const &b) |
xyzVector < xyzVector More... | |
template<typename T > | |
bool | operator<= (xyzVector< T > const &a, xyzVector< T > const &b) |
xyzVector <= xyzVector More... | |
template<typename T > | |
bool | operator>= (xyzVector< T > const &a, xyzVector< T > const &b) |
xyzVector >= xyzVector More... | |
template<typename T > | |
bool | operator> (xyzVector< T > const &a, xyzVector< T > const &b) |
xyzVector > xyzVector More... | |
template<typename T > | |
bool | operator== (xyzVector< T > const &v, T const &t) |
xyzVector == T More... | |
template<typename T > | |
bool | operator!= (xyzVector< T > const &v, T const &t) |
xyzVector != T More... | |
template<typename T > | |
bool | operator< (xyzVector< T > const &v, T const &t) |
xyzVector < T More... | |
template<typename T > | |
bool | operator<= (xyzVector< T > const &v, T const &t) |
xyzVector <= T More... | |
template<typename T > | |
bool | operator>= (xyzVector< T > const &v, T const &t) |
xyzVector >= T More... | |
template<typename T > | |
bool | operator> (xyzVector< T > const &v, T const &t) |
xyzVector > T More... | |
template<typename T > | |
bool | operator== (T const &t, xyzVector< T > const &v) |
T == xyzVector. More... | |
template<typename T > | |
bool | operator!= (T const &t, xyzVector< T > const &v) |
T != xyzVector. More... | |
template<typename T > | |
bool | operator< (T const &t, xyzVector< T > const &v) |
T < xyzVector. More... | |
template<typename T > | |
bool | operator<= (T const &t, xyzVector< T > const &v) |
T <= xyzVector. More... | |
template<typename T > | |
bool | operator>= (T const &t, xyzVector< T > const &v) |
T >= xyzVector. More... | |
template<typename T > | |
bool | operator> (T const &t, xyzVector< T > const &v) |
T > xyzVector. More... | |
template<typename T > | |
bool | equal_length (xyzVector< T > const &a, xyzVector< T > const &b) |
Equal length? More... | |
template<typename T > | |
bool | not_equal_length (xyzVector< T > const &a, xyzVector< T > const &b) |
Not equal length? More... | |
template<typename U > | |
void | subtract (xyzVector< U > const &a, xyzVector< U > const &b, xyzVector< U > &r) |
Subtract: xyzVector - xyzVector. More... | |
template<typename U > | |
void | subtract (xyzVector< U > const &v, U const &t, xyzVector< U > &r) |
Subtract: xyzVector - Value. More... | |
template<typename U > | |
void | subtract (U const &t, xyzVector< U > const &v, xyzVector< U > &r) |
Subtract: Value - xyzVector. More... | |
template<typename U > | |
void | multiply (xyzVector< U > const &v, U const &t, xyzVector< U > &r) |
Multiply: xyzVector * Value. More... | |
template<typename U > | |
void | multiply (U const &t, xyzVector< U > const &v, xyzVector< U > &r) |
Multiply: Value * xyzVector. More... | |
template<typename T > | |
xyzVector< T > | update_operation (xyzVector< T > const &a, xyzVector< T > const &b) |
template<typename T > | |
xyzVector< T > | update_5way_operation (xyzVector< T > const &a, xyzVector< T > const &b, xyzVector< T > const &c, xyzVector< T > const &d, xyzVector< T > const &e) |
template<typename U > | |
U | angle_of (xyzVector< U > const &a, xyzVector< U > const &b) |
Angle between two vectors (in radians on [ 0, pi ]) More... | |
template<typename U > | |
U | angle_of (xyzVector< U > const &a, xyzVector< U > const &b, xyzVector< U > const &c) |
Angle formed by three consecutive points (in radians on [ 0, pi ]) More... | |
template<typename U > | |
U | cos_of (xyzVector< U > const &a, xyzVector< U > const &b) |
Cosine of angle between two vectors. More... | |
template<typename U > | |
U | cos_of (xyzVector< U > const &a, xyzVector< U > const &b, xyzVector< U > const &c) |
Cosine of angle formed by three consecutive points. More... | |
template<typename U > | |
U | sin_of (xyzVector< U > const &a, xyzVector< U > const &b) |
Sine of angle between two vectors. More... | |
template<typename U > | |
U | sin_of (xyzVector< U > const &a, xyzVector< U > const &b, xyzVector< U > const &c) |
Sine of angle formed by three consecutive points. More... | |
template<typename U > | |
xyzVector< U > | min (xyzVector< U > const &a, xyzVector< U > const &b) |
xyzVector with min coordinates of two xyzVectors More... | |
template<typename U > | |
xyzVector< U > | max (xyzVector< U > const &a, xyzVector< U > const &b) |
xyzVector with max coordinates of two xyzVectors More... | |
template<typename U > | |
xyzVector< U > | cross (xyzVector< U > const &a, xyzVector< U > const &b) |
Cross product. More... | |
template<typename U > | |
xyzVector< U > | cross_product (xyzVector< U > const &a, xyzVector< U > const &b) |
Cross product. More... | |
template<typename U > | |
void | cross (xyzVector< U > const &a, xyzVector< U > const &b, xyzVector< U > &c) |
Cross product: Return via argument (slightly faster) More... | |
template<typename U > | |
void | cross_product (xyzVector< U > const &a, xyzVector< U > const &b, xyzVector< U > &c) |
Cross product: Return via argument (slightly faster) More... | |
template<typename U > | |
xyzVector< U > | midpoint (xyzVector< U > const &a, xyzVector< U > const &b) |
Midpoint of 2 xyzVectors. More... | |
template<typename U > | |
void | midpoint (xyzVector< U > const &a, xyzVector< U > const &b, xyzVector< U > &m) |
Midpoint of 2 xyzVectors: Return via argument (slightly faster) More... | |
template<typename U > | |
xyzVector< U > | center (xyzVector< U > const &a, xyzVector< U > const &b) |
Center of 2 xyzVectors. More... | |
template<typename U > | |
void | center (xyzVector< U > const &a, xyzVector< U > const &b, xyzVector< U > &m) |
Center of 2 xyzVectors: Return via argument (slightly faster) More... | |
template<typename U > | |
xyzVector< U > | center (xyzVector< U > const &a, xyzVector< U > const &b, xyzVector< U > const &c) |
Center of 3 xyzVectors. More... | |
template<typename U > | |
void | center (xyzVector< U > const &a, xyzVector< U > const &b, xyzVector< U > const &c, xyzVector< U > &m) |
Center of 3 xyzVectors: Return via argument (slightly faster) More... | |
template<typename U > | |
xyzVector< U > | center (xyzVector< U > const &a, xyzVector< U > const &b, xyzVector< U > const &c, xyzVector< U > const &d) |
Center of 4 xyzVectors. More... | |
template<typename U > | |
void | center (xyzVector< U > const &a, xyzVector< U > const &b, xyzVector< U > const &c, xyzVector< U > const &d, xyzVector< U > &m) |
Center of 4 xyzVectors: Return via argument (slightly faster) More... | |
template<typename U > | |
void | add (xyzVector< U > const &a, xyzVector< U > const &b, xyzVector< U > &r) |
Add: xyzVector + xyzVector. More... | |
template<typename U > | |
void | add (xyzVector< U > const &v, U const &t, xyzVector< U > &r) |
Add: xyzVector + Value. More... | |
template<typename U > | |
void | add (U const &t, xyzVector< U > const &v, xyzVector< U > &r) |
Add: Value + xyzVector. More... | |
template<typename U > | |
bool | equal_length (xyzVector< U > const &a, xyzVector< U > const &b) |
Equal length? More... | |
template<typename U > | |
bool | not_equal_length (xyzVector< U > const &a, xyzVector< U > const &b) |
Not equal length? More... | |
template<typename U > | |
U | dot (xyzVector< U > const &a, xyzVector< U > const &b) |
Dot product. More... | |
template<typename U > | |
U | inner_product (xyzVector< U > const &a, xyzVector< U > const &b) |
Inner product ( == dot product ) More... | |
template<typename U > | |
void | divide (xyzVector< U > const &v, U const &t, xyzVector< U > &r) |
Divide: xyzVector / Value. More... | |
template<typename T > | |
std::ostream & | operator<< (std::ostream &stream, xyzVector< T > const &v) |
stream << xyzVector output operator More... | |
template<typename T > | |
std::istream & | operator>> (std::istream &stream, xyzVector< T > &v) |
stream >> xyzVector input operator More... | |
template<typename T > | |
std::string | truncate_and_serialize_xyz_vector (xyzVector< T > vector, Real precision) |
void | calc_zscore (std::map< Size, Real > const &input_v, std::map< Size, Real > &zscore_v, bool negating=false) |
Calculate a Z-score from a set of data. Real i_zscore = (input_v[i]-mean)/stdev;. More... | |
Unit headers.
A collection of functions for working with probabilities.
Vector0's that can perform mathmatical functions.
Generic base class for the MathNTensor class. Since the MathNTensor class takes a type AND a dimensionality as template arguments, it's not possible to have a generic pointer to a MathNTensor of arbitrary dimensionality. The base class allows this.
File input/output for the MathNTensor class.
construction/destructor of 3-D Matrix's with some functions
Mathmatical functions for the MathMatrix class.
construction/destructor of Matrix's with some functions
Tricubic spline for smoothly interpolating a function in 3 dimensions.
Base class for abstract N-dimensional PolycubicSpline.
Polycubic spline for smoothly interpolating a function in n dimensions.
Cubic spline for all your evil desires.
Forward declarations for the cubic spline class.
Bicubic spline for all your hearts' desires.
Forward declarations for the bicubic spline class.
read the header file!
A 2D histogram based upon a map structure.
A 1D histogram based upon a map structure.
Boost headers.
Utility headers.
Core headers Utility headers C++ headers
Numeric headers Utility headers C++ headers
C++ headers
Very simple class for histograms based upon maps. You provide the key, which is templated, meaning that the key can be a string, real, size, enum. It will return a count, if you want it
Very simple class for histograms based upon maps. You provide the key, which is templated, meaning that the two keys can be strings, reals, sizes. It will return a count, if you want it
Also called Keys spline or polycubic 'convolution'. See: https://en.wikipedia.org/wiki/Bicubic_interpolation
Unlike prior Rosetta spline interpolation (see interpolation::polycubic_interpolation or B-spline implementation in core::scoring::electron_density::SplineInterp), this does not require pre-training of spline which can be both time-intensive & memory intensive. Instead, uses an interpolant based on nearest neighbor grid points (like polylinear interpolation) and next-nearest neighbor.
First derivative is continuous (but second deriv is not, in general).
If we need more accuracy & smoothness, there is a higher-order cubic spline that looks out one more neighbor (see Keys, "Cubic convolution interpolation for digital image processing", IEEE Transactions on Acoustics, Speech, and Signal Processing 1981).
If we need more speed, following is pretty inefficient to ensure generality (see notes). Also, there is apparently a faster version called osculatory interpolation that predated Keys & Catmull & Rom by 80 years; see Meijering & Unser, "A Note on Cubic Convolution Interpolation", IEEE Transactions on Image Processing 2003.
This is an implementation of an algorithm from Numerical Recipes. It relies heavily on the implementation of the cubic spline (from Numerical Recipes), the MathMatrix, and the MathVector. You MUST USE the MathVector and MathMatrix implementations to use this function. The spline is very customizable and allows you to define the border behaviors (start/end of spline values). If you use the e_Natural (enum) BorderFlag, the start/end (border) of the spline will be linear. This may not be ideal for scoring functions as you want the a smoothing effect at the start/end (border) values. Instead, you probably want to use the e_FirstDeriv (enum) BorderFlag with the first derivate (private member value firstbe_) set to 0. This will cause a smoothing out of the start/end (border) of spline. If you want the splie to be continuous, you should use the e_Periodic (enum) BorderFlag.
To "train" the spline, use must provide the spline with a MathMatrix (numeric::MathMatrix). Lets look at an example. x values y 1__2__ 3 .1 | 1 2 3 | v .3 | 4 5 6 | a .5 | 7 8 9 | l |__________| u e s
Given the above Matrix (MathMatrix) You would want your start (START[2] private member value start_) values to be START[] = {1,.1}. You would then want to assign the delta (DELTA[2], private member value delta_) values to DELTA[] = {1,.2}. These delta values is the change between your x values and your y values. For example, the change between x1 and x2 is 1. Therefore, the delta for the x-values will be 1. For y values, you have y.1, y.3 which is a change of .2, therefore the delta will be .2. You do not have to specify an end because the algorithm will stop when it reaches the last value in the matrix.
Finally, the LinCont determins that if the argument x or y is outside the range decide if the spline should be continued linearly.
The below comments are for the Bicubic spline but apply for the cubic spline. This is an implementation of an algorithm from Numerical Recipes. It relies heavily on the implementation of the cubic spline (from Numerical Recipes), the MathMatrix, and the MathVector. You MUST USE the MathVector and MathMatrix implementations to use this function. The spline is very customizable and allows you to define the border behaviors (start/end of spline values). If you use the e_Natural (enum) BorderFlag, the start/end (border) of the spline will be linear. This may not be ideal for scoring functions as you want the a smoothing effect at the start/end (border) values. Instead, you probably want to use the e_FirstDeriv (enum) BorderFlag with the first derivate (private member value firstbe_) set to 0. This will cause a smoothing out of the start/end (border) of spline. If you want the splie to be continuous, you should use the e_Periodic (enum) BorderFlag.
To "train" the spline, use must provide the spline with a MathMatrix (numeric::MathMatrix). Lets look at an example. x values y 1__2__ 3 .1 | 1 2 3 | v .3 | 4 5 6 | a .5 | 7 8 9 | l |__________| u e s
Given the above Matrix (MathMatrix) You would want your start (START[2] private member value start_) values to be START[] = {1,.1}. You would then want to assign the delta (DELTA[2], private member value delta_) values to DELTA[] = {1,.2}. These delta values is the change between your x values and your y values. For example, the change between x1 and x2 is 1. Therefore, the delta for the x-values will be 1. For y values, you have y.1, y.3 which is a change of .2, therefore the delta will be .2. You do not have to specify an end because the algorithm will stop when it reaches the last value in the matrix.
Finally, the LinCont determins that if the argument x or y is outside the range decide if the spline should be continued linearly.
This is an implementation of an algorithm that was taken from BCL (Jens Meiler) The Matrix is constructed out of arrays and places values into rows/columns based on however many columns/rows you specify. Actual operations of the MathMatrix are implemented in numeric/MathMatrix_operations.hh. To access specific values (elements), you must use the operator (). For example: to access row 5, column 3 of a matrix, you would use matrix(5,3). *****NOTE**** The MathMatrix class is indexed at 0!!!!
This is an implementation of an algorithm that was taken from BCL (Jens Meiler) The Matrix is construction is found in numeric/MathMatrix.hh. These are mathematical functions that can be used by the MathMatrix class. ***Note that these are outside of class, but having the operators take two arguments ensures that no one will use the functions unknowningly
This is an implementation of an algorithm that was taken from BCL (Jens Meiler) *****NOTE**** The MathNTensor class is indexed at 0!
Check out MathNTensor_io.hh for file i/o functions.
To avoid cryptic 'hardwiring' of binary file specification into the code, look for details of # bins as n_bins entry in JSON file.
File should be of the form '.bin.gz', with associated '.json' ASCII file.
This is an implementation of an algorithm that was taken from BCL (Jens Meiler) *****NOTE**** The MathTensor class is indexed at 0!!!!
This is an implementation of an algorithm that was taken from BCL (Jens Meiler) The MathVector is constructed just like utility::vector0, however this class does not inherit from utility::vector0. It is implemented this way to avoid confusion. Most functions from the std::vector / utility::vector0 ARE NOT included. This is a vector that performs mathematical functions, not a "storage" vector. Actual mathematical functions found in numeric/MathVector_operations. To access specific values you must use the operator (). For example: vector(5), will give you the value at index 5. This is done to distinguish from utility::vector!
This is an implementation of an algorithm that was taken from BCL (Jens Meiler) The Matrix is construction is found in numeric/MathVector.hh. These are mathematical functions that can be used by the MathVector class. ***Note that these are outside of class, but having the operators take two arguments ensures that no one will use the functions unknowningly
Currently supported RG types: standard - build in C++ random generator ran3 - old generator from previos version of rosetta
typedef utility::pointer::shared_ptr< AxisRotationSampler const > numeric::AxisRotationSamplerCOP |
typedef utility::pointer::shared_ptr< AxisRotationSampler > numeric::AxisRotationSamplerOP |
typedef utility::pointer::shared_ptr<Calculator> numeric::CalculatorOP |
typedef utility::pointer::weak_ptr<ClusteringTreeNode> numeric::ClusteringTreeNodeAP |
typedef utility::pointer::shared_ptr<ClusteringTreeNode> numeric::ClusteringTreeNodeOP |
using numeric::Length = typedef Real |
using numeric::MathNTensorBaseCOP = typedef utility::pointer::shared_ptr< MathNTensorBase< T > const > |
using numeric::MathNTensorBaseOP = typedef utility::pointer::shared_ptr< MathNTensorBase< T > > |
using numeric::MathNTensorCOP = typedef utility::pointer::shared_ptr< MathNTensor< T,N > const > |
using numeric::MathNTensorOP = typedef utility::pointer::shared_ptr< MathNTensor< T,N > > |
typedef utility::pointer::shared_ptr< Polynomial_1d const > numeric::Polynomial_1dCOP |
typedef utility::pointer::shared_ptr< Polynomial_1d > numeric::Polynomial_1dOP |
typedef utility::pointer::shared_ptr<RocCurve> numeric::RocCurveOP |
typedef utility::pointer::shared_ptr<RocPoint> numeric::RocPointOP |
typedef utility::pointer::shared_ptr< UniformRotationSampler const > numeric::UniformRotationSamplerCOP |
typedef utility::pointer::shared_ptr< UniformRotationSampler > numeric::UniformRotationSamplerOP |
using numeric::Vector = typedef xyzVector<Real> |
typedef xyzMatrix< char > numeric::xyzMatrix_char |
typedef xyzMatrix< long int > numeric::xyzMatrix_long |
typedef xyzMatrix< signed char > numeric::xyzMatrix_schar |
typedef xyzMatrix< short int > numeric::xyzMatrix_short |
typedef xyzMatrix< unsigned char > numeric::xyzMatrix_uchar |
typedef xyzMatrix< unsigned int > numeric::xyzMatrix_uint |
typedef xyzMatrix< unsigned long int > numeric::xyzMatrix_ulong |
typedef xyzMatrix< unsigned short int > numeric::xyzMatrix_ushort |
typedef xyzTriple< char > numeric::xyzTriple_char |
typedef xyzTriple< long int > numeric::xyzTriple_long |
typedef xyzTriple< signed char > numeric::xyzTriple_schar |
typedef xyzTriple< short int > numeric::xyzTriple_short |
typedef xyzTriple< std::size_t > numeric::xyzTriple_size |
typedef xyzTriple< std::size_t > numeric::xyzTriple_size_t |
typedef xyzTriple< unsigned char > numeric::xyzTriple_uchar |
typedef xyzTriple< unsigned int > numeric::xyzTriple_uint |
typedef xyzTriple< unsigned long int > numeric::xyzTriple_ulong |
typedef xyzTriple< unsigned short int > numeric::xyzTriple_ushort |
typedef xyzVector< char > numeric::xyzVector_char |
typedef xyzVector< long int > numeric::xyzVector_long |
typedef xyzVector< signed char > numeric::xyzVector_schar |
typedef xyzVector< short int > numeric::xyzVector_short |
typedef xyzVector< std::size_t > numeric::xyzVector_size |
typedef xyzVector< std::size_t > numeric::xyzVector_size_t |
typedef xyzVector< unsigned char > numeric::xyzVector_uchar |
typedef xyzVector< unsigned int > numeric::xyzVector_uint |
typedef xyzVector< unsigned long int > numeric::xyzVector_ulong |
typedef xyzVector< unsigned short int > numeric::xyzVector_ushort |
enum numeric::RocStatus |
Real & numeric::access_Real_MathNTensor | ( | MathNTensorBaseOP< Real > | tensorbase, |
utility::vector1< Size > const & | position | ||
) |
Utility function to access an entry in a MathNTensor of arbitrary dimensionality unknown at compile time, given a MathNTensorBaseOP.
References utility::pointer::dynamic_pointer_cast(), runtime_assert, runtime_assert_string_msg, and utility_exit_with_message.
void numeric::add | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b, | ||
xyzTriple< T > & | r | ||
) |
Referenced by utility::json_spirit::Semantic_actions< Value_type, Iter_type >::add_to_current(), mutant_modeler.MutantModeler::get_high_res_command_lines(), insert_stage_tag(), utility::split(), utility::split_to_list(), utility::split_to_set(), and pyrosetta.tests.bindings.core.test_pose.TestPoseResidueLabelAccessor::test_labels().
|
inline |
|
inline |
Add: xyzTriple + Value.
References basic::options::OptionKeys::in::file::t.
|
inline |
Add: Value + xyzTriple.
|
inline |
|
inline |
Add: xyzVector + Value.
References basic::options::OptionKeys::in::file::t.
|
inline |
Add: Value + xyzVector.
|
inline |
Helper function to find the rotation to optimally transform the vectors A1-B1 to vectors A2-B2.
References numeric::xyzMatrix< typename >::identity(), inverse(), numeric::xyzVector< typename >::is_zero(), numeric::xyzVector< typename >::normalize(), numeric::xyzVector< typename >::normalize_or_zero(), numeric::xyzMatrix< typename >::xx(), numeric::xyzMatrix< typename >::xy(), numeric::xyzMatrix< typename >::xz(), numeric::xyzMatrix< typename >::yx(), numeric::xyzMatrix< typename >::yy(), numeric::xyzMatrix< typename >::yz(), numeric::xyzMatrix< typename >::zx(), numeric::xyzMatrix< typename >::zy(), and numeric::xyzMatrix< typename >::zz().
|
inline |
Plane angle in degrees: angle value returned.
References basic::options::OptionKeys::hotspot::angle, angle_radians(), and numeric::conversions::degrees().
Referenced by angle_degrees_double(), and find_neighbors_directional().
|
inline |
Angle between two vectors in radians.
References basic::options::OptionKeys::hotspot::angle, angle_radians(), and numeric::conversions::degrees().
|
inline |
References angle_degrees().
|
inline |
References angle_degrees().
Angle between two vectors (in radians on [ 0, pi ])
Referenced by angle_of(), zinc2_homodimer_setup::filter_metal_geom(), zinc1_homodimer_design::setup_rollmoving(), and apps::public1::scenarios::chemically_conjugated_docking::ubq_ras_rotation_angle().
T numeric::angle_of | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b, | ||
xyzTriple< T > const & | c | ||
) |
Angle formed by three consecutive points (in radians on [ 0, pi ])
Angle between two vectors (in radians on [ 0, pi ])
T numeric::angle_of | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b, | ||
xyzVector< T > const & | c | ||
) |
Angle formed by three consecutive points (in radians on [ 0, pi ])
|
inline |
Angle between two vectors (in radians on [ 0, pi ])
References sin_cos_range().
|
inline |
Angle formed by three consecutive points (in radians on [ 0, pi ])
References angle_of().
|
inline |
Angle between two vectors (in radians on [ 0, pi ])
References sin_cos_range().
|
inline |
Angle formed by three consecutive points (in radians on [ 0, pi ])
References angle_of().
|
inline |
Plane angle in radians: angle value passed.
References basic::options::OptionKeys::score::fiber_diffraction::a, basic::options::OptionKeys::score::fiber_diffraction::b, dot(), and sin_cos_range().
Referenced by angle_degrees(), angle_radians(), and angle_radians_double().
|
inline |
Plane angle in radians: angle value returned.
References basic::options::OptionKeys::hotspot::angle, and angle_radians().
|
inline |
Angle between two vectors in radians.
References basic::options::OptionKeys::score::fiber_diffraction::a, basic::options::OptionKeys::hotspot::angle, basic::options::OptionKeys::score::fiber_diffraction::b, dot(), and sin_cos_range().
|
inline |
References angle_radians().
|
inline |
References angle_radians().
|
inline |
References basic::options::OptionKeys::score::fiber_diffraction::a, basic::options::OptionKeys::score::fiber_diffraction::b, modulo(), and test.T007_TracerIO::T.
Referenced by euler_angles_from_rotation_matrix_ZXZ(), euler_angles_from_rotation_matrix_ZYX(), and euler_angles_from_rotation_matrix_ZYZ().
like std::acos but with range checking
References sin_cos_range().
Referenced by numeric::deriv::angle_p1_deriv(), numeric::deriv::angle_p1_p2_p3_deriv(), numeric::deriv::angle_p2_deriv(), and numeric::deriv::dihedral_deriv_second().
|
inline |
void numeric::calc_zscore | ( | std::map< Size, Real > const & | input_v, |
std::map< Size, Real > & | zscore_v, | ||
bool | negating = false |
||
) |
Calculate a Z-score from a set of data. Real i_zscore = (input_v[i]-mean)/stdev;.
References mean(), clean_pdb_keep_ligand::nres, and sum().
void numeric::ccd_angle | ( | utility::vector1< xyzVector< Real > > const & | F, |
utility::vector1< xyzVector< Real > > const & | M, | ||
xyzVector< Real > const & | axis_atom, | ||
xyzVector< Real > const & | theta_hat, | ||
Real & | alpha, | ||
Real & | S | ||
) |
<F> | the coordinates of the fixed target atoms |
<M> | the coordinates of the moving positions to be overlapped with the target atoms |
<theta_hat> | axis vector of the torsion angle |
<alpha> | empty angle to be calculated |
<S> | empty deviation to be calculated |
The objective of an individual cyclic coordinate descent (CCD) move is to minimize the deviation between a set of points that should perfectly superimpose. The deviation squared (S) can be expressed as:
S = Sum(r^2 + f^2) - 2 Sum[r(f_vector dot r_hat)] cos theta - 2 Sum[r(f_vector dot s_hat)] sin theta
The derivative of S with respect to theta (the angle about the rotation axis):
dS/dtheta = 2 Sum[r(f_vector dot r_hat)] sin theta - 2 Sum[r(f_vector dot s_hat)] cos theta
Setting dS/dtheta to zero gives the minimal value of theta, which we call alpha:
tan alpha = Sum[r(f_vector dot s_hat] / Sum[r(f_vector dot r_hat]
If we define... a = Sum(r^2 + f^2) b = 2 Sum[r(f_vector dot r_hat)] c = 2 Sum[r(f_vector dot s_hat)] then S can be rewritten: S = a - b cos alpha - c sin alpha and we can express alpha as tan alpha = c / b
References basic::options::OptionKeys::mh::match::aa, ObjexxFCL::abs(), cross(), numeric::conversions::degrees(), dot(), test.T009_Exceptions::e, ObjexxFCL::format::F(), numeric::xyzVector< typename >::is_unit(), numeric::xyzVector< typename >::length(), test.T007_TracerIO::M, min(), and numeric::xyzVector< typename >::normalized().
xyzTriple< T > numeric::center | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b | ||
) |
Center of 2 xyzTriples.
Referenced by numeric::geometry::hashing::SixDCoordinateBinner::bin_center_point().
void numeric::center | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b, | ||
xyzTriple< T > & | m | ||
) |
Center of 2 xyzTriples: Return via argument (slightly faster)
xyzTriple< T > numeric::center | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b, | ||
xyzTriple< T > const & | c | ||
) |
Center of 3 xyzTriples.
void numeric::center | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b, | ||
xyzTriple< T > const & | c, | ||
xyzTriple< T > & | m | ||
) |
Center of 3 xyzTriples: Return via argument (slightly faster)
xyzTriple< T > numeric::center | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b, | ||
xyzTriple< T > const & | c, | ||
xyzTriple< T > const & | d | ||
) |
Center of 4 xyzTriples.
void numeric::center | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b, | ||
xyzTriple< T > const & | c, | ||
xyzTriple< T > const & | d, | ||
xyzTriple< T > & | m | ||
) |
Center of 4 xyzTriples: Return via argument (slightly faster)
xyzVector< T > numeric::center | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b | ||
) |
Center of 2 xyzVectors.
void numeric::center | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b, | ||
xyzVector< T > & | m | ||
) |
Center of 2 xyzVectors: Return via argument (slightly faster)
xyzVector< T > numeric::center | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b, | ||
xyzVector< T > const & | c | ||
) |
Center of 3 xyzVectors.
void numeric::center | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b, | ||
xyzVector< T > const & | c, | ||
xyzVector< T > & | m | ||
) |
Center of 3 xyzVectors: Return via argument (slightly faster)
xyzVector< T > numeric::center | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b, | ||
xyzVector< T > const & | c, | ||
xyzVector< T > const & | d | ||
) |
Center of 4 xyzVectors.
void numeric::center | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b, | ||
xyzVector< T > const & | c, | ||
xyzVector< T > const & | d, | ||
xyzVector< T > & | m | ||
) |
Center of 4 xyzVectors: Return via argument (slightly faster)
|
inline |
Center of 2 xyzTriples.
|
inline |
Center of 2 xyzTriples: Return via argument (slightly faster)
|
inline |
Center of 3 xyzTriples.
|
inline |
Center of 3 xyzTriples: Return via argument (slightly faster)
|
inline |
Center of 4 xyzTriples.
|
inline |
Center of 4 xyzTriples: Return via argument (slightly faster)
|
inline |
Center of 2 xyzVectors.
|
inline |
Center of 2 xyzVectors: Return via argument (slightly faster)
|
inline |
Center of 3 xyzVectors.
|
inline |
Center of 3 xyzVectors: Return via argument (slightly faster)
|
inline |
Center of 4 xyzVectors.
|
inline |
Center of 4 xyzVectors: Return via argument (slightly faster)
|
inline |
calculate center of mass for coordinates
Referenced by ligand_centroid(), numeric::geometry::residual_squared_of_points_to_plane(), and numeric::geometry::vector_normal_to_ring_plane_of_best_fit().
Number numeric::clamp | ( | Number | value, |
Number | lower_bound, | ||
Number | upper_bound | ||
) |
Clamps to the closed interval [lower_bound, upper_bound]. Templated type must implement operator<.
References value.
|
inline |
References dot_product(), and numeric::xyzVector< typename >::magnitude_squared().
|
inline |
convert a string of comma separated values "0.2,0.4,0.3" to an xyzVector
References utility::from_string(), runtime_assert, utility::string_split(), test.T007_TracerIO::T, and basic::options::OptionKeys::in::file::xyz.
Real const & numeric::const_access_Real_MathNTensor | ( | MathNTensorBaseCOP< Real > | tensorbase, |
utility::vector1< Size > const & | position | ||
) |
Utility function to access an entry in a MathNTensor of arbitrary dimensionality unknown at compile time, given a MathNTensorBaseCOP.
Utility function to get const access to an entry in a MathNTensor of arbitrary dimensionality unknown at compile time, given a MathNTensorBaseCOP.
References utility::pointer::dynamic_pointer_cast(), runtime_assert, runtime_assert_string_msg, and utility_exit_with_message.
T numeric::cos_of | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b, | ||
xyzTriple< T > const & | c | ||
) |
Cosine of angle formed by three consecutive points.
Cosine of angle between two vectors.
T numeric::cos_of | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b, | ||
xyzVector< T > const & | c | ||
) |
Cosine of angle formed by three consecutive points.
|
inline |
Cosine of angle between two vectors.
References sin_cos_range().
|
inline |
Cosine of angle formed by three consecutive points.
References cos_of().
|
inline |
Cosine of angle between two vectors.
References sin_cos_range().
|
inline |
Cosine of angle formed by three consecutive points.
References cos_of().
Cotangent.
References test.T007_TracerIO::T.
xyzTriple< T > numeric::cross | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b | ||
) |
Cross product.
Referenced by numeric::deriv::angle_p2_deriv(), ccd_angle(), numeric::deriv::dihedral_p1_cosine_deriv_first(), numeric::deriv::dihedral_p2_cosine_deriv_first(), dihedral_radians(), numeric::xyzTransform< numeric::Real >::from_four_points(), numeric::deriv::helper(), and numeric::deriv::p1_theta_deriv().
void numeric::cross | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b, | ||
xyzTriple< T > & | c | ||
) |
Cross product: Return via argument (slightly faster)
xyzVector< T > numeric::cross | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b | ||
) |
Cross product.
void numeric::cross | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b, | ||
xyzVector< T > & | c | ||
) |
Cross product: Return via argument (slightly faster)
|
inline |
Cross product.
|
inline |
Cross product: Return via argument (slightly faster)
|
inline |
Cross product.
|
inline |
Cross product: Return via argument (slightly faster)
xyzTriple< T > numeric::cross_product | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b | ||
) |
Cross product.
Referenced by zinc2_homodimer_setup::rollmove_to_inverse_C2_symmetry(), and zinc1_homodimer_design::setup_rollmoving().
void numeric::cross_product | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b, | ||
xyzTriple< T > & | c | ||
) |
Cross product: Return via argument (slightly faster)
xyzVector< T > numeric::cross_product | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b | ||
) |
Cross product.
void numeric::cross_product | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b, | ||
xyzVector< T > & | c | ||
) |
Cross product: Return via argument (slightly faster)
|
inline |
Cross product.
|
inline |
Cross product: Return via argument (slightly faster)
|
inline |
Cross product.
|
inline |
Cross product: Return via argument (slightly faster)
Cosecant.
References test.T007_TracerIO::T.
Referenced by numeric::BodyPosition< typename >::BodyPosition().
cube( x ) == x^3
References numeric::crick_equations::x().
platform::Real numeric::cubic_polynomial_deriv | ( | platform::Real const | x, |
CubicPolynomial const & | cp | ||
) |
Evaluate derivative of cubic polynomial given x and polynomial coefficients.
References numeric::CubicPolynomial::c1, numeric::CubicPolynomial::c2, and numeric::CubicPolynomial::c3.
CubicPolynomial numeric::cubic_polynomial_from_spline | ( | platform::Real | xlo, |
platform::Real | xhi, | ||
SplineParameters const & | sp | ||
) |
Compute cubic polynomial coefficients from a set of SplineParameters.
References basic::options::OptionKeys::score::fiber_diffraction::a, basic::options::OptionKeys::score::fiber_diffraction::b, numeric::CubicPolynomial::c0, numeric::CubicPolynomial::c1, numeric::CubicPolynomial::c2, numeric::CubicPolynomial::c3, basic::options::OptionKeys::cp::cp, test.T009_Exceptions::e, demo.D060_Folding::f, numeric::SplineParameters::y2hi, numeric::SplineParameters::y2lo, numeric::SplineParameters::yhi, and numeric::SplineParameters::ylo.
void numeric::cumulative | ( | RandomAccessIterator | first, |
RandomAccessIterator | last | ||
) |
Converts pdf to cdf.
References normalize().
MathNTensorOP< T, N > numeric::deep_copy | ( | MathNTensor< T, N > const & | source | ) |
MathNTensorBaseOP< T > numeric::deep_copy | ( | MathNTensorBase< T > const & | source | ) |
template MathNTensorBaseOP< Real > numeric::deep_copy | ( | MathNTensorBase< Real > const & | ) |
Explicit template instantiation, apparently needed for PyRosetta.
|
inline |
|
inline |
Dihedral (torsion) angle in degrees: angle value passed.
References dihedral_radians(), and numeric::conversions::to_degrees().
Referenced by dihedral_double().
|
inline |
Dihedral (torsion) angle in degrees: angle value returned.
References numeric::conversions::degrees(), and dihedral_radians().
|
inline |
Dihedral (torsion) angle in degrees: angle value passed.
References dihedral_radians(), and numeric::conversions::to_degrees().
Referenced by dihedral_degrees_double(), and apps::public1::scenarios::chemically_conjugated_docking::ubq_ras_rotation_angle().
|
inline |
Dihedral (torsion) angle in degrees: angle value returned.
References numeric::conversions::degrees(), and dihedral_radians().
|
inline |
References dihedral_degrees().
|
inline |
References dihedral_degrees().
|
inline |
References dihedral().
|
inline |
References dihedral().
|
inline |
Dihedral (torsion) angle in radians: angle value passed.
References basic::options::OptionKeys::score::fiber_diffraction::a, basic::options::OptionKeys::score::fiber_diffraction::b, cross(), dot(), numeric::crick_equations::x(), and numeric::crick_equations::y().
Referenced by dihedral(), dihedral_degrees(), numeric::deriv::dihedral_deriv_second(), dihedral_radians(), dihedral_radians_double(), and minimize_test().
|
inline |
Dihedral (torsion) angle in radians: angle value returned.
References basic::options::OptionKeys::hotspot::angle, and dihedral_radians().
|
inline |
References dihedral_radians().
|
inline |
References dihedral_radians().
|
inline |
References measure_params::norm().
Referenced by numeric::deriv::distance_f1_f2_deriv(), and numeric::random::uniform_vector_sphere().
Distance.
|
inline |
Distance.
References square().
T numeric::distance_squared | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b | ||
) |
Distance squared.
Referenced by HDmakerMover::bb_score(), ExposedStrandMover::bb_score(), and pyrosetta.toolbox.atom_pair_energy::etable_atom_pair_energies().
|
inline |
Distance squared.
References square().
|
inline |
Divide: xyzTriple / Value.
|
inline |
Divide: xyzVector / Value.
References ObjexxFCL::abs().
Referenced by numeric::CalculatorParser::CalculatorParser().
void numeric::do_add_symbol | ( | CalculatorParser & | cp, |
std::string | name, | ||
double | value | ||
) |
References numeric::CalculatorParser::add_symbol().
Referenced by numeric::CalculatorParser::CalculatorParser().
Referenced by numeric::CalculatorParser::CalculatorParser().
Referenced by numeric::CalculatorParser::CalculatorParser().
References log().
Referenced by numeric::CalculatorParser::CalculatorParser().
References log().
Referenced by numeric::CalculatorParser::CalculatorParser().
Referenced by numeric::CalculatorParser::CalculatorParser().
References log().
Referenced by numeric::CalculatorParser::CalculatorParser().
References max().
Referenced by numeric::CalculatorParser::CalculatorParser().
References mean().
Referenced by numeric::CalculatorParser::CalculatorParser().
References median().
Referenced by numeric::CalculatorParser::CalculatorParser().
References min().
Referenced by numeric::CalculatorParser::CalculatorParser().
References ObjexxFCL::pow().
Referenced by numeric::CalculatorParser::CalculatorParser().
Referenced by numeric::CalculatorParser::CalculatorParser().
Referenced by numeric::CalculatorParser::CalculatorParser().
Referenced by numeric::CalculatorParser::CalculatorParser().
Dot product.
Referenced by numeric::deriv::angle_p1_deriv(), numeric::deriv::angle_p1_p2_p3_deriv(), numeric::deriv::angle_p2_deriv(), angle_radians(), ccd_angle(), numeric::deriv::dihedral_p1_cosine_deriv_first(), numeric::deriv::dihedral_p2_cosine_deriv_first(), dihedral_radians(), numeric::xyzTransform< numeric::Real >::intersect3D_2Planes(), numeric::deriv::p1_theta_deriv(), and numeric::deriv::x_and_dtheta_dx().
Distance.
Distance squared Dot product
|
inline |
Dot product.
|
inline |
Dot product.
Dot product.
Referenced by closest_point_on_line().
|
inline |
Dot product.
References numeric::xyzVector< typename >::x_, numeric::xyzVector< typename >::y_, and numeric::xyzVector< typename >::z_.
|
inline |
Dot product.
|
inline |
Classic Jacobi algorithm for the eigenvalues of a real symmetric matrix.
References ObjexxFCL::abs(), debug_assert, basic::options::OptionKeys::frags::j, jacobi_rotation(), numeric::xyzMatrix< typename >::left_multiply_by_transpose(), test.T110_Numeric::m, numeric::xyzMatrix< typename >::right_multiply_by(), test.T007_TracerIO::T, numeric::xyzMatrix< typename >::xx_, numeric::xyzMatrix< typename >::xy_, numeric::xyzMatrix< typename >::xz_, numeric::xyzMatrix< typename >::yx_, numeric::xyzMatrix< typename >::yy_, numeric::xyzMatrix< typename >::yz_, numeric::xyzMatrix< typename >::zx_, numeric::xyzMatrix< typename >::zy_, and numeric::xyzMatrix< typename >::zz_.
|
inline |
Classic Jacobi algorithm for the eigenvalues and eigenvectors of a real symmetric matrix.
References ObjexxFCL::abs(), debug_assert, basic::options::OptionKeys::frags::j, jacobi_rotation(), numeric::xyzMatrix< typename >::left_multiply_by_transpose(), test.T110_Numeric::m, numeric::xyzMatrix< typename >::right_multiply_by(), test.T007_TracerIO::T, numeric::xyzMatrix< typename >::to_identity(), numeric::xyzMatrix< typename >::xx_, numeric::xyzMatrix< typename >::xy_, numeric::xyzMatrix< typename >::xz_, numeric::xyzMatrix< typename >::yx_, numeric::xyzMatrix< typename >::yy_, numeric::xyzMatrix< typename >::yz_, numeric::xyzMatrix< typename >::zx_, numeric::xyzMatrix< typename >::zy_, and numeric::xyzMatrix< typename >::zz_.
Referenced by numeric::model_quality::findUU(), and principal_components_and_eigenvalues().
|
inline |
Equal within specified relative and absolute tolerances?
References ObjexxFCL::abs(), max(), min(), and test.T007_TracerIO::T.
Referenced by numeric::interpolation::bilinearly_interpolated(), and numeric::interpolation::Histogram< typename, typename >::set_params().
|
inline |
are two Real values are equal up to some epsilon
implemented only for Reals, to prevent unsigned hassle (Barak 30/6/2009)
bool numeric::equal_length | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b | ||
) |
Equal length?
|
inline |
Equal length?
bool numeric::equal_length | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b | ||
) |
Equal length?
|
inline |
Equal length?
platform::Real numeric::eval_cubic_polynomial | ( | platform::Real const | x, |
CubicPolynomial const & | cp | ||
) |
Evaluate cubic polynomial at value x given polynomial coefficients.
References numeric::CubicPolynomial::c0, numeric::CubicPolynomial::c1, numeric::CubicPolynomial::c2, and numeric::CubicPolynomial::c3.
void numeric::expand_xforms | ( | OutputIterator | container, |
xyzTransform< T > const & | G1, | ||
xyzTransform< T > const & | G2, | ||
xyzTransform< T > const & | , | ||
int | N = 5 , |
||
Real | r = 9e9 , |
||
xyzVector< T > const & | test_point = xyzVector<T>(Real(1.0),Real(3.0),Real(10.0)) |
||
) |
References test.T110_Numeric::I, test.Workshop5test::test, and numeric::crick_equations::x().
Referenced by expand_xforms().
void numeric::expand_xforms | ( | OutputIterator | container, |
xyzTransform< T > const & | G1, | ||
xyzTransform< T > const & | G2, | ||
int | N = 5 , |
||
Real | r = 9e9 , |
||
xyzVector< T > const & | test_point = xyzVector<T>(Real(1.0),Real(3.0),Real(10.0)) |
||
) |
References expand_xforms().
Calculate the value of N!.
Dangerous for large values of N. Uses a recursive algorithm – might not be efficient and can't be inlined.
|
inline |
convert an FArray2D to a vector of xyzVectors
References ObjexxFCL::index(), basic::options::OptionKeys::cp::output, ObjexxFCL::FArray2< T >::size1(), ObjexxFCL::FArray2D< typename >::size2(), numeric::crick_equations::x(), numeric::crick_equations::y(), and numeric::crick_equations::z().
Referenced by numeric::model_quality::findUU().
|
inline |
convert a 3x3 FArray 2D to an xyzMatrix
References numeric::xyzMatrix< typename >::rows(), ObjexxFCL::FArray2< T >::size1(), and ObjexxFCL::FArray2D< typename >::size2().
Referenced by numeric::model_quality::findUU().
Remainder of x with respect to division by y that is of smallest magnitude.
T numeric::find_nearest_value | ( | typename utility::vector1< T > const & | input_list, |
T | key, | ||
platform::Size | min_index, | ||
platform::Size | max_index | ||
) |
recursive binary search that finds the value closest to key. Call find_nearest_value(input_list,value) instead. It's the driver function for this function. This fails miserably (and silently!) on a non-sorted vector, so don't do that!.
References ObjexxFCL::abs(), and basic::options::OptionKeys::cloud::key.
T numeric::find_nearest_value | ( | typename utility::vector1< T > const & | input_list, |
T | key | ||
) |
given a vector and an input value, return the value in the vector that is closest to the input This is a wrapper for find_nearest_value(input_list,key,min,max) and insures that you're sorted.
References basic::options::OptionKeys::cloud::key.
|
inline |
return the first principal component of the given set of points
References numeric::xyzMatrix< typename >::col(), and principal_components().
void numeric::from_json | ( | const nlohmann::json & | j, |
xyzVector< T > & | v | ||
) |
Greatest common divisor.
References max(), min(), mod(), and test.T007_TracerIO::T.
|
inline |
Greater than or equal within specified relative and absolute tolerances?
References ObjexxFCL::abs(), max(), min(), and test.T007_TracerIO::T.
void numeric::get_cluster_data | ( | utility::vector1< T > & | data_in, |
ClusteringTreeNodeOP | cluster, | ||
utility::vector1< T > & | data_out | ||
) |
Size numeric::get_Real_MathNTensor_dimension_size | ( | MathNTensorBaseCOP< Real > | tensorbase, |
Size const | dimension_index | ||
) |
Given a MathNTensorBaseCOP, get the size along one dimension.
References utility::pointer::dynamic_pointer_cast(), runtime_assert, runtime_assert_string_msg, and utility_exit_with_message.
|
inline |
Greater than within specified relative and absolute tolerances?
References ObjexxFCL::abs(), max(), min(), and test.T007_TracerIO::T.
platform::Size numeric::hash_value | ( | xyzVector< T > const & | v | ) |
numeric::xyzVector< platform::Real > numeric::hsv_to_rgb | ( | platform::Real | h, |
platform::Real | s, | ||
platform::Real | v | ||
) |
convert an HSV color to RGB
numeric::xyzVector< platform::Real > numeric::hsv_to_rgb | ( | numeric::xyzVector< platform::Real > | hsv_triplet | ) |
convert an HSV color to RGB
References demo.D060_Folding::f, basic::options::OptionKeys::score::fiber_diffraction::p, basic::options::OptionKeys::in::file::t, value, numeric::xyzVector< typename >::x(), numeric::xyzVector< typename >::y(), and numeric::xyzVector< typename >::z().
|
inline |
Is a sine or cosine value within a specified tolerance of the valid [-1,1] range?
References test.T007_TracerIO::T, and loops_kic::tol.
T numeric::inner_product | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b | ||
) |
Inner product ( == dot product )
Referenced by numeric::MathVector< double >::square_norm().
T numeric::inner_product | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b | ||
) |
Inner product ( == dot product )
|
inline |
Inner product ( == dot product )
|
inline |
Inner product ( == dot product )
|
inline |
xyzMatrix * xyzVector in-place product
References test.T850_SubClassing::v, numeric::crick_equations::x(), numeric::xyzVector< typename >::x_, numeric::xyzMatrix< typename >::xx_, numeric::xyzMatrix< typename >::xy_, numeric::xyzMatrix< typename >::xz_, numeric::crick_equations::y(), numeric::xyzVector< typename >::y_, numeric::xyzMatrix< typename >::yx_, numeric::xyzMatrix< typename >::yy_, numeric::xyzMatrix< typename >::yz_, numeric::xyzVector< typename >::z_, numeric::xyzMatrix< typename >::zx_, numeric::xyzMatrix< typename >::zy_, and numeric::xyzMatrix< typename >::zz_.
Referenced by numeric::BodyPosition< typename >::invert(), numeric::BodyPosition< typename >::operator()(), and numeric::BodyPosition< typename >::transform().
|
inline |
xyzMatrix^T * xyzVector in-place transpose product
References test.T850_SubClassing::v, numeric::crick_equations::x(), numeric::xyzVector< typename >::x_, numeric::xyzMatrix< typename >::xx_, numeric::xyzMatrix< typename >::xy_, numeric::xyzMatrix< typename >::xz_, numeric::crick_equations::y(), numeric::xyzVector< typename >::y_, numeric::xyzMatrix< typename >::yx_, numeric::xyzMatrix< typename >::yy_, numeric::xyzMatrix< typename >::yz_, numeric::xyzVector< typename >::z_, numeric::xyzMatrix< typename >::zx_, numeric::xyzMatrix< typename >::zy_, and numeric::xyzMatrix< typename >::zz_.
Referenced by numeric::BodyPosition< typename >::inverse_transform().
References numeric::xyzMatrix< typename >::det(), numeric::xyzMatrix< typename >::xx_, numeric::xyzMatrix< typename >::xy_, numeric::xyzMatrix< typename >::xz_, numeric::xyzMatrix< typename >::yx_, numeric::xyzMatrix< typename >::yy_, numeric::xyzMatrix< typename >::yz_, numeric::xyzMatrix< typename >::zx_, numeric::xyzMatrix< typename >::zy_, and numeric::xyzMatrix< typename >::zz_.
Referenced by alignVectorSets(), numeric::UniformRotationSampler::remove_redundant(), and slice_ellipsoid_envelope().
|
inline |
Jacobi rotation.
References ObjexxFCL::abs(), test.T110_Numeric::m, basic::options::OptionKeys::in::file::s, basic::options::OptionKeys::in::file::t, and numeric::xyzMatrix< typename >::to_identity().
Referenced by eigenvalue_jacobi(), and eigenvector_jacobi().
|
inline |
Less than or equal within specified relative and absolute tolerances?
References ObjexxFCL::abs(), max(), min(), and test.T007_TracerIO::T.
double numeric::linear_interpolate | ( | Value | start, |
Value | stop, | ||
unsigned | curr_stage, | ||
unsigned | num_stages | ||
) |
Linearly interpolates a quantity from start to stop over (num_stages + 1) stages.
References basic::options::OptionKeys::cutoutdomain::start.
Computes log(x) in the given base.
Referenced by calculate_binding_energy(), numeric::random::WeightedReservoirSampler< T >::consider_sample(), correct_rama(), do_ln(), do_log(), do_log2(), numeric::random::RandomGenerator::gaussian(), numeric::statistics::kl_divergence(), main(), sigmoid_train(), and numeric::statistics::w().
|
inline |
Less than within specified relative and absolute tolerances?
References ObjexxFCL::abs(), max(), min(), and test.T007_TracerIO::T.
MathVector< T > numeric::MakeVector | ( | T const & | X | ) |
References ObjexxFCL::format::X().
Referenced by numeric::interpolation::spline::BicubicSpline::F(), and numeric::interpolation::spline::BicubicSpline::FdF().
|
inline |
References ObjexxFCL::format::X().
|
inline |
References ObjexxFCL::format::X().
T numeric::max | ( | utility::vector1< T > const & | values | ) |
References test.T200_Scoring::ii, and max().
Referenced by abs_difference(), numeric::geometry::hashing::xyzStripeHash::clash(), numeric::geometry::hashing::xyzStripeHash::clash_amount(), numeric::geometry::hashing::xyzStripeHash::clash_check_ball(), numeric::geometry::hashing::xyzStripeHash::clash_not_resid(), numeric::geometry::hashing::xyzStripeHash::clash_raw(), numeric::CompleteLinkClusterer::comparator(), do_max(), eq_tol(), numeric::geometry::hashing::xyzStripeHash::fill_pairs(), gcd(), ge_tol(), gt_tol(), numeric::geometry::hashing::xyzStripeHash::init(), numeric::geometry::hashing::xyzStripeHashWithMeta< float >::init(), le_tol(), lt_tol(), max(), numeric::geometry::hashing::xyzStripeHash::nbcount(), numeric::geometry::hashing::xyzStripeHashWithMeta< float >::nbcount(), numeric::geometry::hashing::xyzStripeHash::nbcount_raw(), rotation_axis(), numeric::kinematic_closure::sbisect(), numeric::interpolation::Histogram< typename, typename >::set_params(), numeric::kinematic_closure::solve_sturm(), numeric::geometry::hashing::xyzStripeHash::visit(), numeric::geometry::hashing::xyzStripeHashWithMeta< float >::visit(), numeric::geometry::hashing::xyzStripeHash::visit_lax(), and numeric::geometry::hashing::xyzStripeHashWithMeta< float >::visit_lax().
max( a, b, c )
|
inline |
max( a, b, c, d )
References max().
xyzTriple< T > numeric::max | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b | ||
) |
xyzTriple with max coordinates of two xyzTriples
xyzVector< T > numeric::max | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b | ||
) |
xyzVector with max coordinates of two xyzVectors
|
inline |
xyzVector with max coordinates of two xyzVectors
|
inline |
xyzTriple with max coordinates of two xyzTriples
numeric::Real numeric::mean | ( | utility::vector1< numeric::Real > const & | values | ) |
References value.
Referenced by calc_zscore(), and do_mean().
numeric::Real numeric::median | ( | utility::vector1< numeric::Real > const & | values | ) |
Returns the median from a vector1 of Real values.
References test.T040_Types::values.
Referenced by do_median().
xyzTriple< T > numeric::midpoint | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b | ||
) |
Midpoint of 2 xyzTriples.
Referenced by HDmakerMover::apply(), HDmakerMover::find_midpoint(), zinc_stats::ZincStatisticGenerator::recursively_model_rotamer_chis(), and zinc2_homodimer_setup::rollmove_to_inverse_C2_symmetry().
void numeric::midpoint | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b, | ||
xyzTriple< T > & | m | ||
) |
Midpoint of 2 xyzTriples: Return via argument (slightly faster)
xyzVector< T > numeric::midpoint | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b | ||
) |
Midpoint of 2 xyzVectors.
void numeric::midpoint | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b, | ||
xyzVector< T > & | m | ||
) |
Midpoint of 2 xyzVectors: Return via argument (slightly faster)
|
inline |
Midpoint of 2 xyzTriples.
|
inline |
Midpoint of 2 xyzTriples: Return via argument (slightly faster)
|
inline |
Midpoint of 2 xyzVectors.
|
inline |
Midpoint of 2 xyzVectors: Return via argument (slightly faster)
Referenced by abs_difference(), ccd_angle(), numeric::geometry::hashing::xyzStripeHash::clash(), numeric::geometry::hashing::xyzStripeHash::clash_amount(), numeric::geometry::hashing::xyzStripeHash::clash_check_ball(), numeric::geometry::hashing::xyzStripeHash::clash_not_resid(), numeric::geometry::hashing::xyzStripeHash::clash_raw(), do_min(), eq_tol(), numeric::geometry::hashing::xyzStripeHash::fill_pairs(), gcd(), ge_tol(), gt_tol(), numeric::geometry::hashing::xyzStripeHash::init(), numeric::geometry::hashing::xyzStripeHashWithMeta< float >::init(), le_tol(), lt_tol(), min(), numeric::geometry::hashing::xyzStripeHash::nbcount(), numeric::geometry::hashing::xyzStripeHashWithMeta< float >::nbcount(), numeric::geometry::hashing::xyzStripeHash::nbcount_raw(), numeric::interpolation::Histogram< typename, typename >::set_params(), numeric::kinematic_closure::solve_sturm(), numeric::geometry::hashing::xyzStripeHash::visit(), numeric::geometry::hashing::xyzStripeHashWithMeta< float >::visit(), numeric::geometry::hashing::xyzStripeHash::visit_lax(), and numeric::geometry::hashing::xyzStripeHashWithMeta< float >::visit_lax().
T numeric::min | ( | utility::vector1< T > const & | values | ) |
References test.T200_Scoring::ii, and min().
min( a, b, c )
|
inline |
min( a, b, c, d )
References min().
xyzTriple< T > numeric::min | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b | ||
) |
xyzTriple with min coordinates of two xyzTriples
xyzVector< T > numeric::min | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b | ||
) |
xyzVector with min coordinates of two xyzVectors
|
inline |
xyzVector with min coordinates of two xyzVectors
|
inline |
xyzTriple with min coordinates of two xyzTriples
x(mod y) computational modulo returning magnitude < | y | and sign of x
Referenced by gcd(), numeric::interpolation::InterpolatedPotential< N >::get_indices(), numeric::RemainderSelector< T, bool >::remainder(), and numeric::RemainderSelector< T, true >::remainder().
x(mod y) mathematical modulo returning magnitude < | y | and sign of y
Referenced by angles_between_0_180(), numeric::interpolation::periodic_range::full::bilinearly_interpolated(), numeric::interpolation::periodic_range::half::bilinearly_interpolated(), numeric::interpolation::periodic_range::half::bin(), numeric::interpolation::periodic_range::full::bin(), numeric::interpolation::Histogram< typename, typename >::bin_number(), numeric::interpolation::periodic_range::half::interpolated(), numeric::interpolation::periodic_range::full::interpolated(), nonnegative_principal_angle(), nonnegative_principal_angle_degrees(), and nonnegative_principal_angle_radians().
|
inline |
Multiply: xyzVector * Value.
References basic::options::OptionKeys::in::file::t.
|
inline |
Multiply: Value * xyzVector.
|
inline |
Multiply: xyzTriple * Value.
References basic::options::OptionKeys::in::file::t.
|
inline |
Multiply: Value * xyzTriple.
|
inline |
nearest< R >( x ): Nearest R
Referenced by numeric::kdtree::nearest_neighbors().
Nearest periodic value of angle to a base angle in radians.
References nearest_ssize(), and numeric::NumericTraits< T >::pi_2().
|
inline |
Nearest periodic value of angle to a base angle in degrees.
References nearest_ssize(), and test.T007_TracerIO::T.
|
inline |
Nearest periodic value of angle to a base angle in radians.
References nearest_ssize(), and numeric::NumericTraits< T >::pi_2().
nearest_int( x ): Nearest int
References sign(), and test.T007_TracerIO::T.
|
inline |
nearest_size( x ): Nearest std::size_t
References sign(), and test.T007_TracerIO::T.
nearest_ssize( x ): Nearest SSize
References sign(), and test.T007_TracerIO::T.
Referenced by numeric::interpolation::periodic_range::half::bin(), numeric::FastRemainderSelector< T, bool >::fast_remainder(), numeric::FastRemainderSelector< T, true >::fast_remainder(), nearest_angle(), nearest_angle_degrees(), nearest_angle_radians(), numeric::RemainderSelector< T, bool >::remainder(), and numeric::RemainderSelector< T, true >::remainder().
nint( x ): Nearest int
References sign(), and test.T007_TracerIO::T.
Positive principal value of angle in radians on [ 0, 2*pi )
References modulo().
Positive principal value of angle in degrees on [ 0, 360 )
References modulo(), and test.T007_TracerIO::T.
Positive principal value of angle in radians on [ 0, 2*pi )
References modulo().
void numeric::normalize | ( | InputIterator | first, |
InputIterator | last | ||
) |
Normalizes elements on the range [first, last)
References assign_charges::first, and sum().
Referenced by cumulative(), and product().
bool numeric::not_equal_length | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b | ||
) |
Not equal length?
bool numeric::not_equal_length | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b | ||
) |
Not equal length?
|
inline |
Not equal length?
|
inline |
Not equal length?
|
inline |
|
inline |
References ObjexxFCL::format::X().
|
inline |
References ObjexxFCL::format::X().
|
inline |
compare to matrices for inequality
MATRIX_LHS | lhs matrix |
MATRIX_RHS | rhs matrix |
|
inline |
compare if all items in matrix are not equal to a given VALUE
MATRIX_LHS | matrix with values |
VALUE_RHS | value that is compared against |
References numeric::MathMatrix< T >::begin(), and numeric::MathMatrix< T >::end().
|
inline |
compare if all items in matrix are not equal to a given VALUE
VALUE_LHS | value that is compared against |
MATRIX_RHS | matrix with values |
xyzVector< T > numeric::operator* | ( | xyzMatrix< T > const & | m, |
xyzVector< T > const & | v | ||
) |
|
inline |
References numeric::MathVector< T >::begin(), and numeric::MathVector< T >::end().
|
inline |
|
inline |
|
inline |
multiply two matrixs of equal size by building the inner product yielding the scalar product
MATRIX_LHS | lhs matrix |
MATRIX_RHS | rhs matrix |
References numeric::MathMatrix< T >::get_number_cols(), numeric::MathMatrix< T >::get_number_rows(), and basic::options::OptionKeys::frags::j.
|
inline |
multiply scalar with matrix
SCALAR_LHS | lhs value to be multiplied |
MATRIX_RHS | rhs matrix |
|
inline |
multiply matrix with scalar
MATRIX_LHS | lhs matrix |
SCALAR_RHS | rhs value to be multiplied |
|
inline |
multiply matrix with vector
MATRIX_LHS | lhs matrix |
VECTOR | vector to be multiplied |
References numeric::MathMatrix< T >::get_number_cols(), numeric::MathMatrix< T >::get_number_rows(), and basic::options::OptionKeys::frags::j.
|
inline |
multiply matrix with scalar
MATRIX_LHS | matrix to multiply to |
SCALAR | scalar to be multiplied |
References numeric::MathMatrix< T >::begin(), numeric::MathMatrix< T >::end(), and basic::options::OptionKeys::mp::transform::transform.
|
inline |
|
inline |
|
inline |
|
inline |
|
inline |
sum two matrixs of equal size
MATRIX_LHS | lhs matrix |
MATRIX_RHS | rhs matrix |
|
inline |
add value to matrix
MATRIX_LHS | lhs matrix |
VALUE_RHS | rhs value to be added |
|
inline |
add matrix to value
VALUE_LHS | lhs value to be added |
MATRIX_RHS | rhs matrix |
|
inline |
add one matrix to another
MATRIX_LHS | matrix to add to |
MATRIX_RHS | matrix to add |
References numeric::MathMatrix< T >::begin(), numeric::MathMatrix< T >::end(), and basic::options::OptionKeys::mp::transform::transform.
|
inline |
add scalar to matrix
MATRIX_LHS | matrix to add to |
VALUE | scalar to be added |
References numeric::MathMatrix< T >::begin(), numeric::MathMatrix< T >::end(), and basic::options::OptionKeys::mp::transform::transform.
|
inline |
References test.T007_TracerIO::T.
|
inline |
|
inline |
|
inline |
|
inline |
subtract two matrixs of equal size
MATRIX_LHS | lhs matrix |
MATRIX_RHS | rhs matrix |
|
inline |
subtract value from matrix
MATRIX_LHS | lhs matrix |
VALUE_RHS | rhs value to be subtracted |
|
inline |
subtract matrix from value
VALUE_LHS | rhs value to be subtracted |
MATRIX_RHS | lhs matrix |
References numeric::MathMatrix< T >::size().
|
inline |
subtract one matrix from another
MATRIX_LHS | matrix to subtract from |
MATRIX_RHS | matrix to subtract |
References numeric::MathMatrix< T >::begin(), numeric::MathMatrix< T >::end(), and basic::options::OptionKeys::mp::transform::transform.
|
inline |
subtract scalar from matrix
MATRIX_LHS | matrix to subtract from |
VALUE | scalar to be added |
References numeric::MathMatrix< T >::begin(), numeric::MathMatrix< T >::end(), and basic::options::OptionKeys::mp::transform::transform.
|
inline |
|
inline |
|
inline |
|
inline |
divide matrix with scalar
MATRIX_LHS | lhs matrix |
SCALAR_RHS | rhs value to be divided by |
|
inline |
divide scalar by matrix
SCALAR_LHS | lhs value to be divided |
MATRIX_RHS | rhs matrix to be used to divide the scalar |
References numeric::MathMatrix< T >::size().
|
inline |
divide one matrix by another
MATRIX_LHS | matrix to divided |
MATRIX_RHS | matrix to divide by |
|
inline |
divide matrix by scalar
MATRIX_LHS | matrix to divide |
SCALAR | scalar to divide by |
References numeric::MathMatrix< T >::begin(), numeric::MathMatrix< T >::end(), and basic::options::OptionKeys::mp::transform::transform.
std::ostream & numeric::operator<< | ( | std::ostream & | os, |
MultiDimensionalHistogram const & | mdhist | ||
) |
References numeric::MultiDimensionalHistogram::counts(), numeric::MultiDimensionalHistogram::dim_labels(), numeric::MultiDimensionalHistogram::end(), numeric::MultiDimensionalHistogram::label(), numeric::MultiDimensionalHistogram::num_bins(), numeric::MultiDimensionalHistogram::num_dimensions(), and numeric::MultiDimensionalHistogram::start().
std::ostream& numeric::operator<< | ( | std::ostream & | stream, |
xyzTransform< T > const & | m | ||
) |
stream << xyzTransform output operator
References basic::options::OptionKeys::hotspot::angle, numeric::conversions::degrees(), ObjexxFCL::format::F(), pyrosetta.tests.distributed.test_dask::format, test.T110_Numeric::m, rotation_axis(), numeric::xyzVector< typename >::x(), numeric::xyzVector< typename >::y(), and numeric::xyzVector< typename >::z().
std::ostream& numeric::operator<< | ( | std::ostream & | stream, |
Quaternion< T > const & | q | ||
) |
stream << Quaternion output operator
References basic::options::OptionKeys::ufv::right, ObjexxFCL::uppercase(), numeric::statistics::w(), and basic::options::OptionKeys::mp::visualize::width.
std::ostream& numeric::operator<< | ( | std::ostream & | stream, |
xyzMatrix< T > const & | m | ||
) |
stream << xyzMatrix output operator
References test.T110_Numeric::m, basic::options::OptionKeys::ufv::right, ObjexxFCL::uppercase(), numeric::statistics::w(), and basic::options::OptionKeys::mp::visualize::width.
std::ostream& numeric::operator<< | ( | std::ostream & | stream, |
xyzTriple< T > const & | v | ||
) |
stream << xyzTriple output operator
References basic::options::OptionKeys::ufv::right, ObjexxFCL::uppercase(), test.T850_SubClassing::v, numeric::statistics::w(), and basic::options::OptionKeys::mp::visualize::width.
std::ostream& numeric::operator<< | ( | std::ostream & | stream, |
xyzVector< T > const & | v | ||
) |
stream << xyzVector output operator
References basic::options::OptionKeys::ufv::right, ObjexxFCL::uppercase(), test.T850_SubClassing::v, numeric::statistics::w(), and basic::options::OptionKeys::mp::visualize::width.
std::ostream& numeric::operator<< | ( | std::ostream & | stream, |
BodyPosition< T > const & | p | ||
) |
std::ostream & numeric::operator<< | ( | ostream & | out, |
const Polynomial_1d & | poly | ||
) |
References erraser_single_res_analysis::out, and numeric::Polynomial_1d::show().
std::ostream& numeric::operator<< | ( | std::ostream & | out, |
VoxelArray< F, V > const & | v | ||
) |
References erraser_single_res_analysis::out, test.T110_Numeric::V, and test.T850_SubClassing::v.
|
inline |
References basic::options::OptionKeys::cp::output.
std::ostream& numeric::operator<< | ( | std::ostream & | stream, |
HomogeneousTransform< T > const & | ht | ||
) |
|
inline |
|
inline |
References numeric::MathVector< T >::begin(), numeric::MathVector< T >::end(), and numeric::MathVector< T >::size().
|
inline |
References numeric::MathVector< T >::begin(), numeric::MathVector< T >::end(), and ObjexxFCL::format::X().
|
inline |
compare to matricess for equality
MATRIX_LHS | lhs matrix |
MATRIX_RHS | rhs matrix |
References numeric::MathMatrix< T >::begin(), numeric::MathMatrix< T >::end(), and ObjexxFCL::equal().
|
inline |
|
inline |
compare if all items in matrix are equal to a given VALUE
MATRIX_LHS | matrix with values |
VALUE_RHS | value that is compared against |
References numeric::MathMatrix< T >::begin(), and numeric::MathMatrix< T >::end().
|
inline |
compare if all items in matrix are equal to a given VALUE
VALUE_LHS | value that is compared against |
MATRIX_RHS | matrix with values |
std::istream& numeric::operator>> | ( | std::istream & | stream, |
xyzTransform< T > & | m | ||
) |
stream >> xyzTransform input operator
References numeric::xyzTransform< typename >::R, and numeric::xyzTransform< typename >::t.
std::istream& numeric::operator>> | ( | std::istream & | stream, |
Quaternion< T > & | q | ||
) |
stream >> Quaternion input operator
References numeric::Quaternion< typename >::w(), numeric::Quaternion< typename >::x(), numeric::Quaternion< typename >::y(), and numeric::Quaternion< typename >::z().
std::istream& numeric::operator>> | ( | std::istream & | stream, |
xyzVector< T > & | v | ||
) |
stream >> xyzVector input operator
References numeric::xyzVector< typename >::x(), numeric::xyzVector< typename >::y(), and numeric::xyzVector< typename >::z().
std::istream& numeric::operator>> | ( | std::istream & | stream, |
xyzTriple< T > & | v | ||
) |
stream >> xyzTriple input operator
References numeric::xyzTriple< typename >::x(), numeric::xyzTriple< typename >::y(), and numeric::xyzTriple< typename >::z().
std::istream& numeric::operator>> | ( | std::istream & | stream, |
BodyPosition< T > & | p | ||
) |
stream >> BodyPosition input operator
References read_row(), basic::options::OptionKeys::in::file::t, numeric::xyzVector< typename >::x(), numeric::xyzMatrix< typename >::xx(), numeric::xyzMatrix< typename >::xy(), numeric::xyzMatrix< typename >::xz(), numeric::xyzVector< typename >::y(), numeric::xyzMatrix< typename >::yx(), numeric::xyzMatrix< typename >::yy(), numeric::xyzMatrix< typename >::yz(), numeric::xyzVector< typename >::z(), numeric::xyzMatrix< typename >::zx(), numeric::xyzMatrix< typename >::zy(), and numeric::xyzMatrix< typename >::zz().
std::istream& numeric::operator>> | ( | std::istream & | stream, |
xyzMatrix< T > & | m | ||
) |
stream >> xyzMatrix input operator
References read_row(), numeric::xyzMatrix< typename >::xx(), numeric::xyzMatrix< typename >::xy(), numeric::xyzMatrix< typename >::xz(), numeric::xyzMatrix< typename >::yx(), numeric::xyzMatrix< typename >::yy(), numeric::xyzMatrix< typename >::yz(), numeric::xyzMatrix< typename >::zx(), numeric::xyzMatrix< typename >::zy(), and numeric::xyzMatrix< typename >::zz().
|
inline |
References numeric::MathVector< T >::begin(), numeric::MathVector< T >::end(), and ObjexxFCL::pow().
|
inline |
xyzVector xyzVector outer product
References numeric::xyzVector< typename >::x_, numeric::xyzVector< typename >::y_, and numeric::xyzVector< typename >::z_.
Principal value of angle in radians on ( -pi, pi ].
References remainder().
Principal value of angle in degrees on ( -180, 180 ].
References remainder(), and test.T007_TracerIO::T.
Principal value of angle in radians on ( -pi, pi ].
References remainder().
|
inline |
return a vector containing the eigenvalues corresponding to the first 3 principal components of the given set of points.
References principal_components_and_eigenvalues().
|
inline |
return a matrix containing the first 3 principal components of the given set of points. Matrix columns are principal components, first column is first component, etc.
References principal_components_and_eigenvalues().
Referenced by first_principal_component().
|
inline |
return a pair containing a matrix of the first 3 principal components and a vector of the corresponding eigenvalues of the given set of points.
References numeric::xyzMatrix< typename >::col(), numeric::xyzMatrix< typename >::col_x(), eigenvector_jacobi(), assign_charges::first, basic::options::OptionKeys::frags::j, numeric::xyzVector< typename >::x(), numeric::xyzVector< typename >::y(), and numeric::xyzVector< typename >::z().
Referenced by principal_component_eigenvalues(), and principal_components().
|
inline |
Return a pair containing a matrix (vector of vectors) of all of the principal components and a vector of the corresponding eigenvalues of the given set of points in n-dimensional space.
Note that this does not assume that the input vectors are 3-dimensional. If shift_center=false, the mean vector is not subtracted by this function. (Failure to subtract mean vector prior to function call will produce odd results, however.)
References basic::options::OptionKeys::frags::j, runtime_assert_string_msg, and amino_acids::size.
void numeric::print_probabilities | ( | const utility::vector1< double > & | probs, |
std::ostream & | out | ||
) |
Writes probs to the specified ostream.
|
inline |
References numeric::xyzVector< typename >::x_, numeric::xyzMatrix< typename >::xx_, numeric::xyzMatrix< typename >::xy_, numeric::xyzMatrix< typename >::xz_, numeric::xyzVector< typename >::y_, numeric::xyzMatrix< typename >::yx_, numeric::xyzMatrix< typename >::yy_, numeric::xyzMatrix< typename >::yz_, numeric::xyzVector< typename >::z_, numeric::xyzMatrix< typename >::zx_, numeric::xyzMatrix< typename >::zy_, and numeric::xyzMatrix< typename >::zz_.
void numeric::product | ( | ForwardIterator | probs1_first, |
ForwardIterator | probs1_last, | ||
ForwardIterator | probs2_first, | ||
ForwardIterator | probs2_last | ||
) |
Multiplies two probability vectors with one another. Probability vectors are assumed to have equal lengths.
References basic::options::OptionKeys::frags::j, and normalize().
Referenced by numeric::interpolation::InterpolatedPotential< N >::dimension(), numeric::HomogeneousTransform< double >::operator*(), and numeric::BodyPosition< typename >::transformed().
|
inline |
References test.T400_Refinement::ab, basic::options::OptionKeys::hotspot::angle, max(), min(), numeric::MathVector< T >::norm(), and test.T007_TracerIO::T.
Referenced by proj_angl().
|
inline |
References proj_angl().
|
inline |
References proj_angl().
geometric center
References numeric::xyzVector< typename >::length_squared(), numeric::xyzVector< typename >::x_, numeric::xyzVector< typename >::y_, and numeric::xyzVector< typename >::z_.
Referenced by rotation_matrix().
Interconvert Quaternion <=> Rotation Matrix.
References numeric::Quaternion< typename >::w(), numeric::Quaternion< typename >::x(), numeric::xyzMatrix< typename >::xx(), numeric::xyzMatrix< typename >::xy(), numeric::xyzMatrix< typename >::xz(), numeric::Quaternion< typename >::y(), numeric::xyzMatrix< typename >::yx(), numeric::xyzMatrix< typename >::yy(), numeric::xyzMatrix< typename >::yz(), numeric::Quaternion< typename >::z(), numeric::xyzMatrix< typename >::zx(), numeric::xyzMatrix< typename >::zy(), and numeric::xyzMatrix< typename >::zz().
Referenced by numeric::AxisRotationSampler::AxisRotationSampler().
Interconvert Quaternion <=> Rotation Matrix.
References numeric::Quaternion< typename >::w(), numeric::Quaternion< typename >::x(), numeric::xyzMatrix< typename >::xx(), numeric::xyzMatrix< typename >::xy(), numeric::xyzMatrix< typename >::xz(), numeric::Quaternion< typename >::y(), numeric::xyzMatrix< typename >::yx(), numeric::xyzMatrix< typename >::yy(), numeric::xyzMatrix< typename >::yz(), numeric::Quaternion< typename >::z(), numeric::xyzMatrix< typename >::zx(), numeric::xyzMatrix< typename >::zy(), and numeric::xyzMatrix< typename >::zz().
void numeric::read_probabilities_or_die | ( | const std::string & | filename, |
utility::vector1< double > * | probs | ||
) |
Loads normalized, per-residue probabilities from filename, storing the result in probs. Assumes line i holds the probability of sampling residue i. There must be 1 line for each residue in the pose on which this data will be used.
References basic::options::OptionKeys::in::in, basic::options::OptionKeys::score::fiber_diffraction::p, and utility_exit_with_message.
std::istream& numeric::read_row | ( | std::istream & | stream, |
T & | x, | ||
T & | y, | ||
T & | z | ||
) |
Read an xyzMatrix row from a stream.
References numeric::crick_equations::x(), numeric::crick_equations::y(), and numeric::crick_equations::z().
std::istream& numeric::read_row | ( | std::istream & | stream, |
T & | x, | ||
T & | y, | ||
T & | z, | ||
T & | t | ||
) |
Read an BodyPosition row from a stream.
References basic::options::OptionKeys::in::file::t, numeric::crick_equations::x(), numeric::crick_equations::y(), and numeric::crick_equations::z().
Referenced by operator>>().
void numeric::read_tensor_from_file | ( | std::string const & | filename_input, |
MathNTensor< T, N > & | tensor, | ||
utility::json_spirit::mObject & | json | ||
) |
References utility::io::izstream::close(), utility::io::oc::cout, erraser_single_res_analysis::data, basic::options::OptionKeys::in::file::file, utility::file::file_exists(), test.G202_Module_PythonPDB::filename, utility::json_spirit::get_mArray(), utility::json_spirit::get_string_or_empty(), basic::options::OptionKeys::in::in, utility::io::izstream::read(), utility::replace_in(), runtime_assert, loops_kic::success, DRRAFTER::type, utility_exit_with_message, value, and write_tensor_to_file_without_json().
Referenced by read_tensor_from_file().
void numeric::read_tensor_from_file | ( | std::string const & | filename, |
MathNTensor< T, N > & | tensor | ||
) |
References basic::options::OptionKeys::ddg::json, and read_tensor_from_file().
Remainder of x with respect to division by y that is of smallest magnitude.
Referenced by zlib_stream::basic_zip_streambuf< Elem, Tr, ElemA, ByteT, ByteAT >::flush(), my_main(), principal_angle(), principal_angle_degrees(), principal_angle_radians(), and zlib_stream::basic_zip_streambuf< Elem, Tr, ElemA, ByteT, ByteAT >::zip_to_stream().
Remainder and result of conversion to a different type.
References basic::options::OptionKeys::in::file::s.
numeric::xyzVector< platform::Real > numeric::rgb_to_hsv | ( | platform::Real | r, |
platform::Real | g, | ||
platform::Real | b | ||
) |
convert an RGB color to HSV
numeric::xyzVector< platform::Real > numeric::rgb_to_hsv | ( | numeric::xyzVector< platform::Real > | rgb_triplet | ) |
convert and RGB color to HSV
References numeric::xyzVector< typename >::maximum_value(), numeric::xyzVector< typename >::minimum_value(), numeric::xyzVector< typename >::x(), numeric::xyzVector< typename >::y(), and numeric::xyzVector< typename >::z().
Transformation from rotation matrix to magnitude of helical rotation.
References ObjexxFCL::abs(), numeric::NumericTraits< T >::pi(), sin_cos_range(), basic::options::OptionKeys::loops::ccd::tolerance, and numeric::xyzMatrix< typename >::trace().
Referenced by numeric::EulerAngles< typename >::angular_distance_between().
|
inline |
Transformation from rotation matrix to helical axis of rotation.
References ObjexxFCL::abs(), max(), numeric::NumericTraits< T >::pi(), sin_cos_range(), test.T007_TracerIO::T, basic::options::OptionKeys::loops::ccd::tolerance, numeric::xyzMatrix< typename >::trace(), numeric::crick_equations::x(), numeric::xyzMatrix< typename >::xx_, numeric::xyzMatrix< typename >::xy_, numeric::xyzMatrix< typename >::xz_, numeric::crick_equations::y(), numeric::xyzMatrix< typename >::yx_, numeric::xyzMatrix< typename >::yy_, numeric::xyzMatrix< typename >::yz_, numeric::crick_equations::z(), numeric::xyzMatrix< typename >::zx_, numeric::xyzMatrix< typename >::zy_, and numeric::xyzMatrix< typename >::zz_.
Referenced by operator<<(), numeric::random::random_rotation_angle(), and rotation_axis_angle().
|
inline |
Transformation from rotation matrix to compact axis-angle representation.
References rotation_axis().
|
inline |
Rotation matrix for rotation about an axis by an angle in radians.
References numeric::xyzVector< typename >::normalized(), projection_matrix(), test.T007_TracerIO::T, numeric::xyzVector< typename >::x_, numeric::xyzMatrix< typename >::xx_, numeric::xyzMatrix< typename >::xy_, numeric::xyzMatrix< typename >::xz_, numeric::xyzVector< typename >::y_, numeric::xyzMatrix< typename >::yx_, numeric::xyzMatrix< typename >::yy_, numeric::xyzMatrix< typename >::yz_, numeric::xyzVector< typename >::z_, numeric::xyzMatrix< typename >::zx_, numeric::xyzMatrix< typename >::zy_, and numeric::xyzMatrix< typename >::zz_.
Referenced by numeric::xyzTransform< numeric::Real >::align(), numeric::alignment::QCPKernel< Real >::calc_coordinate_superposition(), numeric::xyzTransform< numeric::Real >::rot(), rotation_matrix(), rotation_matrix_degrees(), rotation_matrix_radians(), zinc1_homodimer_design::setup_rollmoving(), and slice_ellipsoid_envelope().
|
inline |
References numeric::xyzVector< typename >::magnitude(), and rotation_matrix().
|
inline |
Rotation matrix for rotation about an axis by an angle in degrees.
References numeric::conversions::radians(), and rotation_matrix().
Referenced by numeric::random::gaussian_random_xform(), and numeric::xyzTransform< numeric::Real >::rot_deg().
|
inline |
|
inline |
|
inline |
|
inline |
Rotation matrix for rotation about an axis by an angle in radians.
References rotation_matrix().
T numeric::scalar_product | ( | MathVector< T > const & | VECTOR_A, |
MathVector< T > const & | VECTOR_B | ||
) |
Secant.
References test.T007_TracerIO::T.
|
inline |
Convert vector to a json_spirit Value.
References utility::tools::make_vector(), numeric::crick_equations::x(), numeric::xyzVector< typename >::x(), numeric::crick_equations::y(), numeric::xyzVector< typename >::y(), numeric::crick_equations::z(), and numeric::xyzVector< typename >::z().
sign( x )
References test.T007_TracerIO::T.
Referenced by numeric::NearestSelector< R, T, true >::nearest(), nearest_int(), nearest_size(), nearest_ssize(), nint(), and urs_R2ang().
|
inline |
Sign transfered value.
References ObjexxFCL::abs().
Referenced by numeric::model_quality::rms_fit(), numeric::model_quality::rmsfitca2(), and numeric::model_quality::rmsfitca3().
Adjust a sine or cosine value to the valid [-1,1] range if within a specified tolerance or exit with an error.
References utility::io::oc::cerr, utility::io::oc::cout, CREATE_EXCEPTION, test.T007_TracerIO::T, loops_kic::tol, utility_exit, and numeric::crick_equations::x().
Referenced by angle_of(), angle_radians(), arccos(), cos_of(), euler_angles_from_rotation_matrix_ZXZ(), euler_angles_from_rotation_matrix_ZYX(), euler_angles_from_rotation_matrix_ZYZ(), numeric::xyzTransform< numeric::Real >::euler_angles_rad(), numeric::HomogeneousTransform< double >::euler_angles_rad(), numeric::EulerAngles< typename >::from_rotation_matrix(), rotation_angle(), rotation_axis(), numeric::xyzTransform< numeric::Real >::rotation_cosine(), and numeric::xyzTransform< numeric::Real >::rotation_sine().
Sine of angle between two vectors.
Referenced by sin_of().
T numeric::sin_of | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b, | ||
xyzTriple< T > const & | c | ||
) |
Sine of angle formed by three consecutive points.
Sine of angle between two vectors.
T numeric::sin_of | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b, | ||
xyzVector< T > const & | c | ||
) |
Sine of angle formed by three consecutive points.
|
inline |
|
inline |
Sine of angle formed by three consecutive points.
References sin_of().
|
inline |
|
inline |
Sine of angle formed by three consecutive points.
References sin_of().
|
inline |
References numeric::sphericalVector< typename >::phi(), numeric::constants::f::pi_over_180, numeric::sphericalVector< typename >::radius(), numeric::sphericalVector< typename >::theta(), numeric::xyzVector< typename >::x(), basic::options::OptionKeys::in::file::xyz, numeric::xyzVector< typename >::y(), and numeric::xyzVector< typename >::z().
square( x ) == x^2
References numeric::crick_equations::x().
Referenced by distance(), distance_squared(), find_neighbors(), numeric::model_quality::maxsub(), run_pep_prep(), sin_of(), numeric::fourier::SHT::so3_correlate(), and numeric::fourier::SHT::sph_standardize().
void numeric::subtract | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b, | ||
xyzTriple< T > & | r | ||
) |
Subtract: xyzTriple - xyzTriple.
Referenced by util::get_surrounding_res().
|
inline |
|
inline |
Subtract: xyzVector - Value.
References basic::options::OptionKeys::in::file::t.
|
inline |
Subtract: Value - xyzVector.
|
inline |
|
inline |
Subtract: xyzTriple - Value.
References basic::options::OptionKeys::in::file::t.
|
inline |
Subtract: Value - xyzTriple.
double numeric::sum | ( | InputIterator | first, |
InputIterator | last | ||
) |
Returns the sum of all elements on the range [first, last)
References assign_charges::first.
Referenced by calc_zscore(), numeric::nls::lm_lmdif(), numeric::nls::lm_lmpar(), numeric::nls::lm_qrfac(), numeric::nls::lm_qrsolv(), and normalize().
void numeric::to_json | ( | nlohmann::json & | j, |
const xyzVector< T > & | v | ||
) |
|
inline |
xyzMatrix^T * xyzVector product
References numeric::xyzVector< typename >::x_, numeric::xyzMatrix< typename >::xx_, numeric::xyzMatrix< typename >::xy_, numeric::xyzMatrix< typename >::xz_, numeric::xyzVector< typename >::y_, numeric::xyzMatrix< typename >::yx_, numeric::xyzMatrix< typename >::yy_, numeric::xyzMatrix< typename >::yz_, numeric::xyzVector< typename >::z_, numeric::xyzMatrix< typename >::zx_, numeric::xyzMatrix< typename >::zy_, and numeric::xyzMatrix< typename >::zz_.
Referenced by numeric::BodyPosition< typename >::inverse_transformed(), and numeric::BodyPosition< typename >::inverse_translation().
std::string numeric::truncate_and_serialize_xyz_vector | ( | xyzVector< T > | vector, |
Real | precision | ||
) |
Referenced by urs_R2ang().
|
inline |
References basic::options::OptionKeys::hotspot::angle, numeric::conversions::degrees(), sign(), and urs_norm4().
Referenced by numeric::UniformRotationSampler::remove_redundant().
|
inline |
convert a vector1 of xyzVectors to an FArray2D
References ObjexxFCL::index(), basic::options::OptionKeys::cp::output, numeric::crick_equations::x(), numeric::crick_equations::y(), and numeric::crick_equations::z().
Wrap the given angle in the range [-180, 180).
No conversion to degrees is implied.
Wrap the given angle in the range [0, 2 * pi).
No conversion to radians is implied.
References basic::options::OptionKeys::hotspot::angle, and numeric::NumericTraits< T >::pi_2().
Referenced by numeric::kinematic_closure::radians::torsion().
Wrap the given angle in the range [0, 360).
No conversion to degrees is implied.
References basic::options::OptionKeys::hotspot::angle.
Wrap the given angle in the range [-pi, pi).
No conversion to radians is implied.
References numeric::NumericTraits< T >::pi().
bool numeric::write_tensor_to_file | ( | std::string const & | filename, |
MathNTensor< T, N > const & | tensor, | ||
utility::json_spirit::Value const & | json_input | ||
) |
bool numeric::write_tensor_to_file_without_json | ( | std::string const & | filename, |
MathNTensor< T, N > const & | tensor | ||
) |
References utility::io::ozstream::close(), numeric::MathNTensor< T, N >::data(), utility::io::ozstream::good(), erraser_single_res_analysis::out, numeric::MathNTensor< T, N >::size(), test.T007_TracerIO::T, and utility::io::ozstream::write().
Referenced by read_tensor_from_file(), and write_tensor_to_file().
Rotation matrix for rotation about the x axis by an angle in radians.
References numeric::xyzMatrix< typename >::rows(), and test.T007_TracerIO::T.
Referenced by x_rotation_matrix_degrees(), and x_rotation_matrix_radians().
Rotation matrix for rotation about the x axis by an angle in degrees.
References numeric::conversions::radians(), and x_rotation_matrix().
Referenced by numeric::random::random_rotation_angle(), and numeric::HomogeneousTransform< double >::set_xaxis_rotation_deg().
Rotation matrix for rotation about the x axis by an angle in radians.
References x_rotation_matrix().
Referenced by main(), and numeric::HomogeneousTransform< double >::set_xaxis_rotation_rad().
|
inline |
References numeric::sphericalVector< typename >::phi(), numeric::constants::f::pi_over_180, numeric::sphericalVector< typename >::radius(), numeric::sphericalVector< typename >::theta(), numeric::xyzVector< typename >::x(), numeric::xyzVector< typename >::y(), and numeric::xyzVector< typename >::z().
|
inline |
convert an xyzMatrix to a 3x3 FArray 2D
References basic::options::OptionKeys::cp::output, numeric::xyzMatrix< typename >::xx(), numeric::xyzMatrix< typename >::xy(), numeric::xyzMatrix< typename >::xz(), numeric::xyzMatrix< typename >::yx(), numeric::xyzMatrix< typename >::yy(), numeric::xyzMatrix< typename >::yz(), numeric::xyzMatrix< typename >::zx(), numeric::xyzMatrix< typename >::zy(), and numeric::xyzMatrix< typename >::zz().
Rotation matrix for rotation about the y axis by an angle in radians.
References numeric::xyzMatrix< typename >::rows(), and test.T007_TracerIO::T.
Referenced by y_rotation_matrix_degrees(), and y_rotation_matrix_radians().
Rotation matrix for rotation about the y axis by an angle in degrees.
References numeric::conversions::radians(), and y_rotation_matrix().
Referenced by numeric::random::random_rotation_angle(), and numeric::HomogeneousTransform< double >::set_yaxis_rotation_deg().
Rotation matrix for rotation about the y axis by an angle in radians.
References y_rotation_matrix().
Referenced by main(), and numeric::HomogeneousTransform< double >::set_yaxis_rotation_rad().
Rotation matrix for rotation about the z axis by an angle in radians.
References numeric::xyzMatrix< typename >::rows(), and test.T007_TracerIO::T.
Referenced by zinc1_homodimer_design::setup_rollmoving(), z_rotation_matrix_degrees(), and z_rotation_matrix_radians().
Rotation matrix for rotation about the z axis by an angle in degrees.
References numeric::conversions::radians(), and z_rotation_matrix().
Referenced by numeric::random::random_rotation_angle(), and numeric::HomogeneousTransform< double >::set_zaxis_rotation_deg().
Rotation matrix for rotation about the z axis by an angle in radians.
References z_rotation_matrix().
Referenced by main(), and numeric::HomogeneousTransform< double >::set_zaxis_rotation_rad().