|
Rosetta
|
Functions | |
| def | sample_folding (sequence, long_frag_filename, long_frag_length, short_frag_filename, short_frag_length, kT=3.0, long_inserts=1, short_inserts=3, cycles=40, jobs=1, job_output='fold_output') |
| Methods. More... | |
| def | guess_disulfides (pose, cutoff=6.0) |
| if you create a custom protocol, you may have additional variables to reset, such as kT More... | |
Variables | |
| extra_options | |
| scorefxn_low = create_score_function('score3') | |
| AddPyMOLObserver(test_pose, True) More... | |
| scorefxn_high = get_fa_scorefxn() | |
| folding_mover = protocols.moves.SequenceMover() | |
| add any other moves you desire More... | |
| mc = MonteCarlo(test_pose, scorefxn_low, kT) | |
| trial = TrialMover(folding_mover, mc) | |
| folding = protocols.moves.RepeatMover(trial, cycles) | |
| for each trajectory, try cycles number of applications More... | |
| jd = PyJobDistributor(job_output, jobs, scorefxn_high) | |
| list | scores = [0]*(jobs + 1) |
| int | counter = 0 |
| parser = optparse.OptionParser() | |
| INTERPRETING RESULTS. More... | |
| dest | |
| default | |
| help | |
| options | |
| args | |
| pose = Pose() | |
| fasta_filename = options.fasta_filename | |
| f = open(fasta_filename, 'r') | |
| sequence = f.readlines() | |
| pdb_filename = options.pdb_filename; | |
| long_frag_filename = options.long_frag_filename | |
| long_frag_length = int(options.long_frag_length) | |
| short_frag_filename = options.short_frag_filename | |
| short_frag_length = int(options.short_frag_length) | |
| kT = float(options.kT) | |
| long_inserts = int(options.long_inserts) | |
| short_inserts = int(options.short_inserts) | |
| cycles = int(options.cycles) | |
| jobs = int(options.jobs) | |
| job_output = options.job_output | |
| def demo.D060_Folding.guess_disulfides | ( | pose, | |
cutoff = 6.0 |
|||
| ) |
if you create a custom protocol, you may have additional variables to reset, such as kT
if you create a custom protocol, this section will most likely change, many protocols exist as single Movers or can be chained together in a sequence (see above) so you need only apply the final Mover b. apply the refinement protocol
c. export the lowest scoring decoy structure for this trajectory -recover the lowest scoring decoy structure
if you want to see the decoy scores, uncomment the line below scorefxn_high( test_pose )
A quick method for probing a protein for cysteine residues close to each
other (within <cutoff> )
References ObjexxFCL.len(), print(), range, sum(), and basic::options::OptionKeys::in::file.xyz.
| def demo.D060_Folding.sample_folding | ( | sequence, | |
| long_frag_filename, | |||
| long_frag_length, | |||
| short_frag_filename, | |||
| short_frag_length, | |||
kT = 3.0, |
|||
long_inserts = 1, |
|||
short_inserts = 3, |
|||
cycles = 40, |
|||
jobs = 1, |
|||
job_output = 'fold_output' |
|||
| ) |
Performs
exporting structures to a PyMOL instance
Output structures are named <job_output>_(job#).pdb
References pyrosetta.distributed.io.pose_from_sequence, and range.
| demo.D060_Folding.args |
| int demo.D060_Folding.counter = 0 |
Referenced by align_backbone_by_chunk(), CustomMover.apply(), JDtestmover.apply(), atom_line(), detail.compile_to_parts(), MainWindow.compute_com_vect(), copy_asymm_unit_to_other_subunits(), detail.count_parts(), do_oom(), OutputManager.dump_pose(), ZincSiteEvaluator.evaluate_mutations_native(), ga_main(), get_frag_rmsd(), apps::pilot::AlignChunkMover.get_local_sequence_mapping(), get_start_index(), idealize_tf_pose(), InstantiateModulesBenchmark.instantiate_filters(), InstantiateModulesBenchmark.instantiate_movers(), InstantiateModulesBenchmark.instantiate_packer_palettes(), InstantiateModulesBenchmark.instantiate_res_selectors(), InstantiateModulesBenchmark.instantiate_reslvl_taskops(), InstantiateModulesBenchmark.instantiate_simple_metrics(), InstantiateModulesBenchmark.instantiate_taskops(), jitterloop(), main(), MSA_design(), multivec2sf(), utility::graph::Digraph.output_connectivity(), utility::graph::Graph.output_connectivity(), perturb_bb_and_relax(), phosphate_stats(), pose_from_posedata(), processChildrenIntensification(), read_pdbs(), rotateUntilCys(), FragMonteCarlo.run(), sequence_tolerance_main(), sequence_tolerance_mf_main(), set_pose_conformation(), shift_center_and_PCA(), CenRotDockingMover.slide_into_contact(), Solver.Solve(), swapalignmentvector(), test_membrane_chain(), trim_and_add_jump_data(), numeric::UniformRotationSampler.UniformRotationSampler(), and NativeEnsemble.write_stats_to_db().
| demo.D060_Folding.cycles = int(options.cycles) |
| demo.D060_Folding.default |
| demo.D060_Folding.dest |
| demo.D060_Folding.extra_options |
| demo.D060_Folding.f = open(fasta_filename, 'r') |
| demo.D060_Folding.fasta_filename = options.fasta_filename |
for each trajectory, try cycles number of applications
| demo.D060_Folding.folding_mover = protocols.moves.SequenceMover() |
add any other moves you desire
| demo.D060_Folding.help |
| demo.D060_Folding.jd = PyJobDistributor(job_output, jobs, scorefxn_high) |
Referenced by AssignClusterToolMover.apply(), TestJD2Mover.apply(), ui::task::Node.data_download_finished(), ui::task::Node.data_is_fresh(), ui::task::Updater.listen_to_updates(), main(), ui::task::TaskCancelDialog.run(), ui::task::TaskSubmit.s_on_queues_finished(), stepwise_monte_carlo(), ui::task::TaskSyncer_TaskStrategy.task_data_upload(), and ui::task::TaskSyncer_TaskStrategy.task_queuing().
| demo.D060_Folding.job_output = options.job_output |
| demo.D060_Folding.jobs = int(options.jobs) |
| demo.D060_Folding.kT = float(options.kT) |
| demo.D060_Folding.long_frag_filename = options.long_frag_filename |
| demo.D060_Folding.long_frag_length = int(options.long_frag_length) |
| demo.D060_Folding.long_inserts = int(options.long_inserts) |
| demo.D060_Folding.mc = MonteCarlo(test_pose, scorefxn_low, kT) |
| demo.D060_Folding.options |
| demo.D060_Folding.parser = optparse.OptionParser() |
INTERPRETING RESULTS.
COMMANDLINE COMPATIBILITY
| demo.D060_Folding.pdb_filename = options.pdb_filename; |
| demo.D060_Folding.pose = Pose() |
| demo.D060_Folding.scorefxn_high = get_fa_scorefxn() |
Referenced by demo.D080_Loop_modeling.sample_single_loop_modeling().
| demo.D060_Folding.scorefxn_low = create_score_function('score3') |
AddPyMOLObserver(test_pose, True)
| list demo.D060_Folding.scores = [0]*(jobs + 1) |
| string demo.D060_Folding.sequence = f.readlines() |
| demo.D060_Folding.short_frag_filename = options.short_frag_filename |
| demo.D060_Folding.short_frag_length = int(options.short_frag_length) |
| demo.D060_Folding.short_inserts = int(options.short_inserts) |
| demo.D060_Folding.trial = TrialMover(folding_mover, mc) |