Rosetta
Functions | Variables
demo.D060_Folding Namespace Reference

Functions

def sample_folding (sequence, long_frag_filename, long_frag_length, short_frag_filename, short_frag_length, kT=3.0, long_inserts=1, short_inserts=3, cycles=40, jobs=1, job_output='fold_output')
 Methods. More...
 
def guess_disulfides (pose, cutoff=6.0)
 if you create a custom protocol, you may have additional variables to reset, such as kT More...
 

Variables

 extra_options
 
 scorefxn_low = create_score_function('score3')
 AddPyMOLObserver(test_pose, True) More...
 
 scorefxn_high = get_fa_scorefxn()
 
 folding_mover = protocols.moves.SequenceMover()
 add any other moves you desire More...
 
 mc = MonteCarlo(test_pose, scorefxn_low, kT)
 
 trial = TrialMover(folding_mover, mc)
 
 folding = protocols.moves.RepeatMover(trial, cycles)
 for each trajectory, try cycles number of applications More...
 
 jd = PyJobDistributor(job_output, jobs, scorefxn_high)
 
list scores = [0]*(jobs + 1)
 
int counter = 0
 
 parser = optparse.OptionParser()
 INTERPRETING RESULTS. More...
 
 dest
 
 default
 
 help
 
 options
 
 args
 
 pose = Pose()
 
 fasta_filename = options.fasta_filename
 
 f = open(fasta_filename, 'r')
 
 sequence = f.readlines()
 
 pdb_filename = options.pdb_filename;
 
 long_frag_filename = options.long_frag_filename
 
 long_frag_length = int(options.long_frag_length)
 
 short_frag_filename = options.short_frag_filename
 
 short_frag_length = int(options.short_frag_length)
 
 kT = float(options.kT)
 
 long_inserts = int(options.long_inserts)
 
 short_inserts = int(options.short_inserts)
 
 cycles = int(options.cycles)
 
 jobs = int(options.jobs)
 
 job_output = options.job_output
 

Function Documentation

◆ guess_disulfides()

def demo.D060_Folding.guess_disulfides (   pose,
  cutoff = 6.0 
)

if you create a custom protocol, you may have additional variables to reset, such as kT

if you create a custom protocol, this section will most likely change, many protocols exist as single Movers or can be chained together in a sequence (see above) so you need only apply the final Mover b. apply the refinement protocol

c. export the lowest scoring decoy structure for this trajectory -recover the lowest scoring decoy structure

if you want to see the decoy scores, uncomment the line below scorefxn_high( test_pose )

A quick method for probing a protein for cysteine residues close to each
    other (within  <cutoff>  )

References ObjexxFCL.len(), print(), range, sum(), and basic::options::OptionKeys::in::file.xyz.

◆ sample_folding()

def demo.D060_Folding.sample_folding (   sequence,
  long_frag_filename,
  long_frag_length,
  short_frag_filename,
  short_frag_length,
  kT = 3.0,
  long_inserts = 1,
  short_inserts = 3,
  cycles = 40,
  jobs = 1,
  job_output = 'fold_output' 
)

Methods.

Performs
    exporting structures to a PyMOL instance
    Output structures are named  <job_output>_(job#).pdb

References pyrosetta.distributed.io.pose_from_sequence, and range.

Variable Documentation

◆ args

demo.D060_Folding.args

◆ counter

int demo.D060_Folding.counter = 0

◆ cycles

demo.D060_Folding.cycles = int(options.cycles)

◆ default

demo.D060_Folding.default

◆ dest

demo.D060_Folding.dest

◆ extra_options

demo.D060_Folding.extra_options

◆ f

demo.D060_Folding.f = open(fasta_filename, 'r')

◆ fasta_filename

demo.D060_Folding.fasta_filename = options.fasta_filename

◆ folding

demo.D060_Folding.folding = protocols.moves.RepeatMover(trial, cycles)

for each trajectory, try cycles number of applications

◆ folding_mover

demo.D060_Folding.folding_mover = protocols.moves.SequenceMover()

add any other moves you desire

◆ help

demo.D060_Folding.help

◆ jd

demo.D060_Folding.jd = PyJobDistributor(job_output, jobs, scorefxn_high)

◆ job_output

demo.D060_Folding.job_output = options.job_output

◆ jobs

demo.D060_Folding.jobs = int(options.jobs)

◆ kT

demo.D060_Folding.kT = float(options.kT)

◆ long_frag_filename

demo.D060_Folding.long_frag_filename = options.long_frag_filename

◆ long_frag_length

demo.D060_Folding.long_frag_length = int(options.long_frag_length)

◆ long_inserts

demo.D060_Folding.long_inserts = int(options.long_inserts)

◆ mc

demo.D060_Folding.mc = MonteCarlo(test_pose, scorefxn_low, kT)

◆ options

demo.D060_Folding.options

◆ parser

demo.D060_Folding.parser = optparse.OptionParser()

INTERPRETING RESULTS.

COMMANDLINE COMPATIBILITY

◆ pdb_filename

demo.D060_Folding.pdb_filename = options.pdb_filename;

◆ pose

demo.D060_Folding.pose = Pose()

◆ scorefxn_high

demo.D060_Folding.scorefxn_high = get_fa_scorefxn()

◆ scorefxn_low

demo.D060_Folding.scorefxn_low = create_score_function('score3')

AddPyMOLObserver(test_pose, True)

◆ scores

list demo.D060_Folding.scores = [0]*(jobs + 1)

◆ sequence

string demo.D060_Folding.sequence = f.readlines()

◆ short_frag_filename

demo.D060_Folding.short_frag_filename = options.short_frag_filename

◆ short_frag_length

demo.D060_Folding.short_frag_length = int(options.short_frag_length)

◆ short_inserts

demo.D060_Folding.short_inserts = int(options.short_inserts)

◆ trial

demo.D060_Folding.trial = TrialMover(folding_mover, mc)