Rosetta
|
Classes | |
class | RmsData |
RmsData is a class intended to replace the global rms_obj namespace from rosetta++. Initial implementation is with a singleton design pattern to mimic a global namespace from rosetta++. More... | |
Functions | |
numeric::Real | calculate_dihedral_distance (numeric::Real dih1, numeric::Real dih2) |
Calculate the dihedral angle distance from directional statistics. More... | |
void | maxsub (int &nsup, ObjexxFCL::FArray1A_double xe, ObjexxFCL::FArray1A_double xp, double &rms, double &psi, int &nali, double &zscore, double &evalue, double &score, double rmstol, double distance_tolerance) |
identify the largest subset of CA atoms of a model that superimposes "well" (under certain rms cutoff) over the experimental structure More... | |
double | erfcc (double x) |
void | COMAS (ObjexxFCL::FArray1A< double > C, ObjexxFCL::FArray1A< double > WT, int NAT, double &XC, double &YC, double &ZC) |
numeric::Real | calc_rms (utility::vector1< xyzVector< Real > > p1_coords, utility::vector1< xyzVector< Real > > p2_coords) |
numeric::Real | rms_wrapper_slow_and_correct (int natoms, FArray2D< numeric::Real > p1a, FArray2D< numeric::Real > p2a) |
numeric::Real | rms_wrapper (int natoms, FArray2D< numeric::Real > p1a, FArray2D< numeric::Real > p2a) |
void | calc_rms_fast (float &rms_out, FArray2A< numeric::Real > xx, FArray2A< numeric::Real > yy, FArray1A< numeric::Real > ww, int npoints, numeric::Real ctx) |
companion function for findUU ( it is optional ) computes the minimum RMS deviation beteen XX and YY as though it rotated the arrays, without actually rotating them. More... | |
void | findUU (FArray2< numeric::Real > &XX, FArray2< numeric::Real > &YY, FArray1< numeric::Real > const &WW, int Npoints, FArray2< numeric::Real > &UU, numeric::Real &sigma3) |
intended to rotate one protein xyz array onto another one such that the point-by-point rms is minimized. More... | |
void | findUU (utility::vector1< numeric::xyzVector< numeric::Real > > &XX, utility::vector1< numeric::xyzVector< numeric::Real > > &YY, utility::vector1< numeric::Real > const &WW, int Npoints, numeric::xyzMatrix< numeric::Real > &UU, numeric::Real &sigma3) |
This is a helper function for using the above implementation of findUU. There is some cost to the conversion but everything else is probably slower and also you don't have to use FArrays everywhere. More... | |
void | BlankMatrixMult (FArray2A< numeric::Real > A, int n, int np, int transposeA, FArray2A< numeric::Real > B, int m, int transposeB, FArray2A< numeric::Real > AxB_out) |
void | MatrixMult (FArray2A< numeric::Real > A, int n, int np, int transposeA, FArray2A< numeric::Real > B, int m, int transposeB, FArray2A< numeric::Real > AxB_out) |
void | fixEigenvector (FArray2A< numeric::Real > m_v) |
void | rms_fit (int npoints, ObjexxFCL::FArray2D< double > xx, ObjexxFCL::FArray2D< double > &yy, ObjexxFCL::FArray1D< double > ww, int natsel, double &esq) |
bool | rmsfitca2 (int npoints, ObjexxFCL::FArray2A< double > xx, ObjexxFCL::FArray2A< double > yy, ObjexxFCL::FArray1A< double > ww, int natsel, double &esq, double const &offset_val=1.0e-7, bool const realign=false) |
computes the rms between two weighted point vectors. More... | |
void | rmsfitca3 (int npoints, ObjexxFCL::FArray2A< double > xx0, ObjexxFCL::FArray2A< double > xx, ObjexxFCL::FArray2A< double > yy0, ObjexxFCL::FArray2A< double > yy, double &esq) |
double | det3 (ObjexxFCL::FArray2A< double > m) |
determinant of a 3x3 matrix More... | |
void | rsym_eigenval (ObjexxFCL::FArray2A< double > m, ObjexxFCL::FArray1A< double > ev) |
computes the eigen values of a real symmetric 3x3 matrix More... | |
void | rsym_rotation (ObjexxFCL::FArray2A< double > mm, ObjexxFCL::FArray2A< double > m, ObjexxFCL::FArray1A< double > ev, ObjexxFCL::FArray2A< double > rot) |
finds a (proper) rotation matrix that minimizes the rms. More... | |
void | rsym_evector (ObjexxFCL::FArray2A< double > m, ObjexxFCL::FArray1A< double > ev, ObjexxFCL::FArray2A< double > mvec) |
Author: charlie strauss (cems) 2001 given original matrix plus its eigen values compute the eigen vectors. USAGE notice: for computing min rms rotations be sure to call this with the lowest eigen value in Ev(3). More... | |
void numeric::model_quality::BlankMatrixMult | ( | FArray2A< numeric::Real > | A, |
int | n, | ||
int | np, | ||
int | transposeA, | ||
FArray2A< numeric::Real > | B, | ||
int | m, | ||
int | transposeB, | ||
FArray2A< numeric::Real > | AxB_out | ||
) |
A | - [in/out]? - |
n | - [in/out]? - |
np | - [in/out]? - |
transposeA | - [in/out]? - |
B | - [in/out]? - |
m | - [in/out]? - |
transposeB | - [in/out]? - |
AxB_out | - [in/out]? - |
References ObjexxFCL::FArray2A< T >::dimension(), kmeans_adaptive_kernel_density_bb_dependent_rotlib::m, MatrixMult(), and kmeans_adaptive_kernel_density_bb_dependent_rotlib::n.
Referenced by findUU().
numeric::Real numeric::model_quality::calc_rms | ( | utility::vector1< xyzVector< Real > > | p1_coords, |
utility::vector1< xyzVector< Real > > | p2_coords | ||
) |
References create_a3b_hbs::i, create_a3b_hbs::k, natoms(), and rms_wrapper().
Referenced by gpu_refold_test(), main(), my_main(), RMS_ScoringScheme::score(), SphereGrinder(), and test_refold().
void numeric::model_quality::calc_rms_fast | ( | float & | rms_out, |
FArray2A< numeric::Real > | xx, | ||
FArray2A< numeric::Real > | yy, | ||
FArray1A< numeric::Real > | ww, | ||
int | npoints, | ||
numeric::Real | ctx | ||
) |
companion function for findUU ( it is optional ) computes the minimum RMS deviation beteen XX and YY as though it rotated the arrays, without actually rotating them.
rms_out | [in/out]? - the real-valued output value of the rms deviation |
XX | - [in/out]? - first set of points representing xyz coordinates |
YY | - [in/out]? - second set of points representing xyz coordinates |
WW | - [in/out]? - relative weight for each point |
npoints | - [in/out]? - number of points |
ctx | - [in/out]? - magic number computed during find UU that is needed for this calculation |
References ObjexxFCL::abs(), ObjexxFCL::FArray1A< T >::dimension(), create_a3b_hbs::j, create_a3b_hbs::k, loops_kic::rms, xx, and yy.
Referenced by compare_gpu_result_against_cpu(), and rms_wrapper().
numeric::Real numeric::model_quality::calculate_dihedral_distance | ( | numeric::Real | dih1, |
numeric::Real | dih2 | ||
) |
void numeric::model_quality::COMAS | ( | ObjexxFCL::FArray1A_double | C, |
ObjexxFCL::FArray1A_double | WT, | ||
int | NAT, | ||
double & | XC, | ||
double & | YC, | ||
double & | ZC | ||
) |
C | - [in/out]? - |
WT | - [in/out]? - |
NAT | - [in/out]? - |
XC | - [in/out]? - |
YC | - [in/out]? - |
ZC | - [in/out]? - |
References C, ObjexxFCL::FArray1A< T >::dimension(), create_a3b_hbs::i, and basic::options::OptionKeys::abinitio::star::star.
Referenced by rms_fit(), rmsfitca2(), and superimpose_pose().
double numeric::model_quality::det3 | ( | ObjexxFCL::FArray2A< double > | m | ) |
determinant of a 3x3 matrix
cute factoid: det of a 3x3 is the dot product of one row with the cross product of the other two. This explains why a right hand coordinate system has a positive determinant. cute huh?
m | - [in/out]? - |
References kmeans_adaptive_kernel_density_bb_dependent_rotlib::m.
Referenced by rms_fit(), rmsfitca2(), and rmsfitca3().
x | - [in/out]? - |
References ObjexxFCL::abs(), predPRE::t, x, and predPRE::z.
Referenced by maxsub().
void numeric::model_quality::findUU | ( | FArray2< numeric::Real > & | XX, |
FArray2< numeric::Real > & | YY, | ||
FArray1< numeric::Real > const & | WW, | ||
int | Npoints, | ||
FArray2< numeric::Real > & | UU, | ||
numeric::Real & | sigma3 | ||
) |
intended to rotate one protein xyz array onto another one such that the point-by-point rms is minimized.
1) ORIGINAL PAPER HAD ERROR IN HANDEDNESS OF VECTORS, LEADING TO INVERSION MATRICIES ON OCCASION. OOPS. NOW FIXED. SEE ACTA CRYST(1978) A34 PAGE 827 FOR REVISED MATH 2) TRAP DIVIDE BY ZERO ERRORS WHEN NO ROTATIONS REQUIRED. 3) ADDED WEIGHTS (WEIGHTS NOW WORK) 4) ADDED FAST RMS CALC AUXILIRARY ROUTINE. 5) CHANGED TO numeric::Real TO DEAL WITH HIGHLY DISSIMILAR BUT LARGE PROTEINS.
switched order of array subscripts so that can use logical array sizes XX and YY are lists of Npoints XYZ vectors (3xNpoint matrix) to be co-aligned these matrices are returned slightly modified: they are translated so their origins are at the center of mass (see Weights below ). WW is the weight or importance of each point (weighted RMS) vector of size Npoints The center of mass is figured including this variable. UU is a 3x3 symmetric orthonornal rotation matrix that will rotate YY onto XX such that the weighted RMS distance is minimized.
[in] | XX | - in - XX,YY are 2D arrays of x,y,z position of each atom |
[in] | YY | - in - |
[in] | WW | - in - a weight matrix for the points |
[in] | Npoints | - in - the number of XYZ points (need not be physical array size) |
[out] | UU | - out - 3x3 rotation matrix. |
[out] | sigma3 | - out - TO BE PASSED TO OPTIONAL FAST_RMS CALC ROUTINE. |
CAVEATS: 1) it is CRITICAL that the first physical dimension of XX and YY is 3
2) an iterative approx algorithm computes the diagonalization of a 3x3 matrix. if this program needs a speed up this could be made into an analytic but uggggly diagonalization function.
References ObjexxFCL::abs(), BlankMatrixMult(), ObjexxFCL::format::E(), numeric::eigenvector_jacobi(), fixEigenvector(), create_a3b_hbs::i, create_a3b_hbs::j, create_a3b_hbs::k, XX, and YY.
Referenced by align_pose(), calc_rmsd_and_clash_score(), compare_gpu_result_against_cpu(), findUU(), apps::pilot::AlignChunkMover::get_superposition_transformation(), get_superposition_transformation(), main(), optimal_rotation(), and rms_wrapper().
void numeric::model_quality::findUU | ( | utility::vector1< numeric::xyzVector< numeric::Real > > & | XX, |
utility::vector1< numeric::xyzVector< numeric::Real > > & | YY, | ||
utility::vector1< numeric::Real > const & | WW, | ||
int | Npoints, | ||
numeric::xyzMatrix< numeric::Real > & | UU, | ||
numeric::Real & | sigma3 | ||
) |
This is a helper function for using the above implementation of findUU. There is some cost to the conversion but everything else is probably slower and also you don't have to use FArrays everywhere.
References numeric::FArray_to_vector_of_xyzvectors(), numeric::FArray_to_xyzmatrix(), findUU(), XX, and YY.
void numeric::model_quality::fixEigenvector | ( | FArray2A< numeric::Real > | m_v | ) |
m_v is a 3x3 matrix of 3 eigen vectors replaces the third eigenvector by taking cross product of of the first two eigenvectors
m_v | - [in/out]? - |
References ObjexxFCL::FArray2A< T >::dimension(), and measure_params::norm().
Referenced by findUU().
void numeric::model_quality::MatrixMult | ( | FArray2A< numeric::Real > | A, |
int | n, | ||
int | np, | ||
int | transposeA, | ||
FArray2A< numeric::Real > | B, | ||
int | m, | ||
int | transposeB, | ||
FArray2A< numeric::Real > | AxB_out | ||
) |
multiplys matrices A (npXn) and B (npXn). results in AxB.out IF THE MATRICES are SQUARE. you can also multiply the transposes of these matrices to do so set the transposeA or transposeB flags to 1, otherwise they should be zero.
A | - [in/out]? - |
n | - [in/out]? - |
np | - [in/out]? - |
transposeA | - [in/out]? - |
B | - [in/out]? - |
m | - [in/out]? - |
transposeB | - [in/out]? - |
AxB_out | - [in/out]? - |
this function does SUMS to the old value of AxB_out... you might want to call BlankMatrixMult instead (see above) 4/30/01 jjg
this function works on numeric::Real values float version below. jjg
References spectral_cluster_kmeans_adaptive_kernel_density_bb_dependent_rotlib::A, ObjexxFCL::FArray2A< T >::dimension(), create_a3b_hbs::i, create_a3b_hbs::j, create_a3b_hbs::k, kmeans_adaptive_kernel_density_bb_dependent_rotlib::m, and kmeans_adaptive_kernel_density_bb_dependent_rotlib::n.
Referenced by BlankMatrixMult().
void numeric::model_quality::maxsub | ( | int & | nsup, |
ObjexxFCL::FArray1A_double | xe, | ||
ObjexxFCL::FArray1A_double | xp, | ||
double & | rms, | ||
double & | psi, | ||
int & | nali, | ||
double & | zscore, | ||
double & | evalue, | ||
double & | score, | ||
double | rmstol, | ||
double | distance_tolerance | ||
) |
identify the largest subset of CA atoms of a model that superimposes "well" (under certain rms cutoff) over the experimental structure
cems 2001. this is the main rosetta entry point for this function. it is a wrapper for max sub, converting the input arrays to double precision and reducing them to just calphas it does max sub comparing the claphas passed into thosw of the native and returns the number of aligned residues, the rms of these and the log eval c of the comparison
x | - [in/out]? - |
nali | - [in/out]? - |
rms | - [in/out]? - |
logeval | - [in/out]? - |
this function was adapted and improved by cem strauss from an original template provided by angel ortiz.
Here applies a modification of Dani Fischer's heuristic algorithm for finding the largest subset of residues for superimposition within a threshold. The part that restraints the secondary structure matching needs to be changed.
At this point, the algorithm works as follows: first, the residue assignment is done on the basis of the global secondary structure similarity. Then, with this assignment for residue pairs, the heuristic procedure of Fisher is used.
A seed segment of 7 CA atoms was first superimposed onto the reference structure, then the neighbor radius is gradually increased (up to "distance_tolerance"):to include more CA atoms within the range "t" to do a new superimposition, if the aligned rms is below the rms cutoff "rmstol" the new alignment is accepted. This proceduare is repeated for every 7-residue seed segment along the sequence until the largest subset of atoms which can yield an aligned rms below is found."nsup" is the total number of CA atoms in the model, xe and xp are coordinates of native and model respectively. "rms" is the final aligned rms based on the identified subset of atoms, "nali" is the number of aligned atoms in the subset and "psi" is the ratio of nali/nsup; The rest scores are metrics for quality of the alignment. Note that if no suitable alignment can be found given the input rms cutoff, the rms of overall structure alignment is returned and "nali" is set to zero. – chu 2009/10
nsup | - [in/out]? - |
xe | - [in/out]? - |
xp | - [in/out]? - |
rms | - [in/out]? - |
psi | - [in/out]? - |
nali | - [in/out]? - |
zscore | - [in/out]? - |
evalue | - [in/out]? - |
score | - [in/out]? - |
References numeric::model_quality::RmsData::add_rms(), numeric::model_quality::RmsData::clear_rms(), ObjexxFCL::FArray1A< T >::dimension(), basic::options::OptionKeys::loodo::distance_tolerance, erfcc(), utility::SingletonBase< RmsData >::get_instance(), create_a3b_hbs::i, create_a3b_hbs::j, create_a3b_hbs::k, extract_by_sidechain_sasa_score::l, kmeans_adaptive_kernel_density_bb_dependent_rotlib::n, lactamize::nr, ObjexxFCL::pow(), oop_conformations::psi, loops_kic::rms, rmsfitca2(), rmsfitca3(), numeric::square(), and predPRE::t.
Referenced by largest_cluster().
void numeric::model_quality::rms_fit | ( | int | npoints, |
ObjexxFCL::FArray2D< double > | xx, | ||
ObjexxFCL::FArray2D< double > & | yy, | ||
ObjexxFCL::FArray1D< double > | ww, | ||
int | natsel, | ||
double & | esq | ||
) |
numeric::Real numeric::model_quality::rms_wrapper | ( | int | natoms, |
FArray2D< numeric::Real > | p1a, | ||
FArray2D< numeric::Real > | p2a | ||
) |
References calc_rms_fast(), findUU(), and natoms().
Referenced by MyScoreMover::apply(), balls_rms(), calc_dist(), calc_rms(), AllCrmsd::calculate(), get_lig_rmsd(), interface_rmsd(), local_rms(), local_rms_window(), main(), and DisulfEpos::rms().
numeric::Real numeric::model_quality::rms_wrapper_slow_and_correct | ( | int | natoms, |
FArray2D< numeric::Real > | p1a, | ||
FArray2D< numeric::Real > | p2a | ||
) |
References create_a3b_hbs::i, create_a3b_hbs::j, natoms(), ObjexxFCL::pow(), and rmsfitca2().
bool numeric::model_quality::rmsfitca2 | ( | int | npoints, |
ObjexxFCL::FArray2A< double > | xx, | ||
ObjexxFCL::FArray2A< double > | yy, | ||
ObjexxFCL::FArray1A< double > | ww, | ||
int | natsel, | ||
double & | esq, | ||
double const & | offset_val = 1.0e-7 , |
||
bool const | realign = false |
||
) |
computes the rms between two weighted point vectors.
xx_0,yy_0 are the input vectors of of points and ww is their weights xx,yy are by product output vectors of the same points offset to remove center of mass det is an out value of the determinant of the cross moment matrix returned value is the rms
most of this is double for good reasons. first there are some large differences of small numbers. and second the rsymm_eignen() function can internally have numbers larger than the largest double number. (you could do some fancy foot work to rescale things if you really had a problem with this.)
npoints | - [in/out]? - | |
xx | - [in/out]? - | |
yy | - [in/out]? - | |
ww | - [in/out]? - | |
natsel | - [in/out]? - | |
esq | - [in/out]? - | |
[in] | offset_val | - A small offset temporarily added or subtracted from z-coordinates to ensure that determinants are nonzero. Defaults to 1e-7. |
[in] | relalign | - If true, the small offset is subtracted off again before final output. False by default (legacy behaviour). |
References ObjexxFCL::abs(), COMAS(), det3(), ObjexxFCL::FArray1A< T >::dimension(), create_a3b_hbs::i, create_a3b_hbs::j, create_a3b_hbs::k, docking::R, basic::options::OptionKeys::edensity::realign, rsym_eigenval(), rsym_rotation(), numeric::sign_transfered(), predPRE::t, xx, and yy.
Referenced by maxsub(), rms_wrapper_slow_and_correct(), and superimpose_pose().
void numeric::model_quality::rmsfitca3 | ( | int | npoints, |
ObjexxFCL::FArray2A< double > | xx0, | ||
ObjexxFCL::FArray2A< double > | xx, | ||
ObjexxFCL::FArray2A< double > | yy0, | ||
ObjexxFCL::FArray2A< double > | yy, | ||
double & | esq | ||
) |
This function gets its alignment info via a namespace! Alignment (rotation matrix) and rms(esq) are computed on the basis of residues previously designated by calls to add_rms(). However, the rotation is applied to all Npoints of XX0,yy0 with the results returned in xx,yy.
most of this is double for good reasons. first there are some large differences of small numbers. second the rsymm_eignen() function can internally have numbers larger than the largest double number. (you could do some fancy foot work to rescale m_moment if you really had a problem with this.)
npoints | - [in/out]? - |
xx0 | - [in/out]? - |
xx | - [in/out]? - |
yy0 | - [in/out]? - |
yy | - [in/out]? - |
esq | - [in/out]? - |
References ObjexxFCL::abs(), comp(), numeric::model_quality::RmsData::count(), det3(), ObjexxFCL::FArray2A< T >::dimension(), utility::SingletonBase< RmsData >::get_instance(), create_a3b_hbs::i, create_a3b_hbs::j, create_a3b_hbs::k, create_a3b_hbs::r, rsym_eigenval(), rsym_rotation(), numeric::sign_transfered(), predPRE::t, numeric::model_quality::RmsData::xm(), numeric::model_quality::RmsData::xre(), numeric::model_quality::RmsData::xrp(), numeric::model_quality::RmsData::xse(), numeric::model_quality::RmsData::xsp(), xx, and yy.
Referenced by maxsub().
void numeric::model_quality::rsym_eigenval | ( | ObjexxFCL::FArray2A< double > | m, |
ObjexxFCL::FArray1A< double > | ev | ||
) |
computes the eigen values of a real symmetric 3x3 matrix
the method used is a deterministic analytic result that I hand factored.(whew!) Amusingly, while I suspect this factorization is not yet optimal in the number of calcs required I cannot find a signifcantly better one. (if it were optimal I suspect I would not have to compute imaginary numbers that I know must eventually cancel out to give a net real result.) this method relys on the fact that an analytic factoring of an order 3 polynomial exists. m(3,3) is a 3x3 real symmetric matrix: only the upper triangle is actually used ev(3) is a real vector of eigen values, not neccesarily in sorted order.
m | - [in/out]? - |
ev | - [in/out]? - |
References a, docking::a2, docking::a3, ObjexxFCL::abs(), compute_difference::b, kmeans_adaptive_kernel_density_bb_dependent_rotlib::c, ObjexxFCL::FArray1A< T >::dimension(), vancomycin::f2, kmeans_adaptive_kernel_density_bb_dependent_rotlib::m, max(), measure_params::norm(), ObjexxFCL::pow(), basic::options::OptionKeys::james::real, xx, test.T110_numeric::xy, test.T110_numeric::xz, yy, test.T110_numeric::yz, and test.T110_numeric::zz.
Referenced by rms_fit(), rmsfitca2(), and rmsfitca3().
void numeric::model_quality::rsym_evector | ( | ObjexxFCL::FArray2A< double > | m, |
ObjexxFCL::FArray1A< double > | ev, | ||
ObjexxFCL::FArray2A< double > | mvec | ||
) |
Author: charlie strauss (cems) 2001 given original matrix plus its eigen values compute the eigen vectors. USAGE notice: for computing min rms rotations be sure to call this with the lowest eigen value in Ev(3).
The minimal factorization of the eigenvector problem I have derived below has a puzzling or, rather, interesting assymetry. Namely, it doesn't matter what either ZZ=M(3,3) is or what Ev(3) is! One reason for this is that of course all we need to know is contained in the M matrix in the firstplace, so the eigen values overdetermine the problem We are just exploiting the redundant info in the eigen values to hasten the solution. What I dont know is if infact there exists any symmetic form using the eigen values.
we deliberately introduce another assymetry for numerical stability, and to force proper rotations (since eigen vectors are not unique within a sign change). first, we explicitly numerically norm the vectors to 1 rather than assuming the algebra will do it with enough accuracy. ( and its faster to boot!) second, we explicitly compute the third vector as being the cross product of the previous two rather than using the M matrix and third eigen value. If you arrange the eigen values so that the third eigen value is the lowest then this guarantees a stable result under the case of either very small eigen value or degenerate eigen values. this norm, and ignoring the third eigen value also gaurentee us the even if the eigen vectors are not perfectly accurate that, at least, the matrix that results is a pure orthonormal rotation matrix, which for most applications is the most important form of accuracy.
m | - [in/out]? - |
ev | - [in/out]? - |
mvec | - [in/out]? - |
References utility::io::oc::cout, ObjexxFCL::FArray2A< T >::dimension(), ObjexxFCL::FArray1A< T >::dimension(), create_a3b_hbs::i, kmeans_adaptive_kernel_density_bb_dependent_rotlib::m, xx, test.T110_numeric::xy, yy, test.T110_numeric::yz, and test.T110_numeric::zx.
Referenced by rsym_rotation().
void numeric::model_quality::rsym_rotation | ( | ObjexxFCL::FArray2A< double > | mm, |
ObjexxFCL::FArray2A< double > | m, | ||
ObjexxFCL::FArray1A< double > | ev, | ||
ObjexxFCL::FArray2A< double > | rot | ||
) |
finds a (proper) rotation matrix that minimizes the rms.
this computes the rotation matrix based on the eigenvectors of m that gives the the mimimum rms. this is determined using mm the cross moments matrix.
for best results the third eigen value should be the smallest eigen value!
mm | - [in/out]? - |
m | - [in/out]? - |
ev | - [in/out]? - |
rot | - [in/out]? - |
References ObjexxFCL::abs(), ObjexxFCL::FArray1A< T >::dimension(), create_a3b_hbs::i, create_a3b_hbs::j, create_a3b_hbs::k, kmeans_adaptive_kernel_density_bb_dependent_rotlib::m, beta_nonlocal::mm, measure_params::norm(), rot, rsym_evector(), and erraser_analysis::temp.
Referenced by rms_fit(), rmsfitca2(), and rmsfitca3().