Rosetta
|
perform a given mover and sample structures by MonteCarlo with gradual simulated annealing More...
#include <protocols/monte_carlo/GenericSimulatedAnnealer.hh>
#include <protocols/monte_carlo/GenericSimulatedAnnealerCreator.hh>
#include <basic/Tracer.hh>
#include <numeric/random/random.hh>
#include <utility/tag/Tag.hh>
#include <core/pose/Pose.hh>
#include <core/pack/task/TaskFactory.hh>
#include <core/io/silent/SilentStruct.hh>
#include <core/io/silent/SilentStructFactory.hh>
#include <core/io/silent/SilentFileData.hh>
#include <core/io/silent/SilentFileOptions.hh>
#include <protocols/rosetta_scripts/util.hh>
#include <protocols/filters/Filter.hh>
#include <fstream>
#include <utility/tag/XMLSchemaGeneration.hh>
#include <basic/datacache/DataMapObj.hh>
Namespaces | |
protocols | |
The instance of Loops contained by AbrelaxApplication should be replaced by a LoopsOP. | |
protocols::monte_carlo | |
Functions | |
static basic::Tracer | TR ("protocols.simple_moves.GenericSimulatedAnnealer") |
core::Real | protocols::monte_carlo::calc_sum (utility::vector1< core::Real > const &vec) |
core::Real | protocols::monte_carlo::calc_mean (utility::vector1< core::Real > const &vec) |
core::Real | protocols::monte_carlo::calc_sum_squares (utility::vector1< core::Real > const &vec) |
core::Real | protocols::monte_carlo::calc_sum_xy (utility::vector1< core::Real > const &x, utility::vector1< core::Real > const &y) |
utility::vector1< core::Real > | protocols::monte_carlo::linear_regression (utility::vector1< core::Real > const &x, utility::vector1< core::Real > const &y) |
Given a set of x and y points, returns the linear regression. More... | |
std::ostream & | protocols::monte_carlo::operator<< (std::ostream &os, AcceptedScores const &scores) |
void | protocols::monte_carlo::replace_file (std::string const &origfile, std::string const &newfile) |
safely replaces a file with another More... | |
perform a given mover and sample structures by MonteCarlo with gradual simulated annealing
The score evaluation of pose during MC after applying mover is done by either FilterOP that can do report_sm() or ScoreFunctionOP. By setting sample_type_ to high, you can also sample the pose that have higher score.
|
static |