Rosetta
|
Unit headers. More...
Classes | |
class | ClusterOptions |
class | AgglomerativeHierarchicalClusterer |
class | SingleLinkClusterer |
class | AverageLinkClusterer |
class | CompleteLinkClusterer |
class | AxisRotationSampler |
class | BodyPosition |
Rigid body 3-D position/transform. More... | |
class | CalculatorParser |
class | Calculator |
class | ClusteringTreeNode |
struct | CubicPolynomial |
struct | SplineParameters |
SplineParameters is a simple struct for holding the cubic spline polynomials used in the etable to interpolate the lennard-jones attractive and LK-solvation terms to zero smoothly. These splines have exactly two knots to represent them, and the same x values are used for all the knots: thus the only parameters needed are the y values at the knots, and the second-derivatives for the polynomials at knots. More... | |
class | DiscreteIntervalEncodingTree |
class | DietNode |
class | EulerAngles |
Euler angles 3-D orientation representation. More... | |
class | HomogeneousTransform |
class | HomogeneousTransform_Double |
class | ColPointers |
class | ColsPointer |
class | ColVectors |
class | RowPointers |
class | RowsPointer |
class | RowVectors |
class | IntervalSet |
class | IntervalSet_Double |
struct | IOTraits |
Numerics input/output type traits. More... | |
struct | IOTraits< short int > |
Numerics input/output type traits short int specialization. More... | |
struct | IOTraits< int > |
Numerics input/output type traits int specialization. More... | |
struct | IOTraits< long int > |
: Numerics input/output type traits long int specialization More... | |
struct | IOTraits< unsigned short int > |
: Numerics input/output type traits unsigned short int specialization More... | |
struct | IOTraits< unsigned int > |
: Numerics input/output type traits unsigned int specialization More... | |
struct | IOTraits< unsigned long int > |
Numerics input/output type traits unsigned long int specialization. More... | |
struct | IOTraits< float > |
Numerics input/output type traits float Specialization. More... | |
struct | IOTraits< double > |
Numerics input/output type traits double specialization. More... | |
struct | IOTraits< long double > |
Numerics input/output type traits long double specialization. More... | |
class | MathMatrix |
class | MathNTensor |
class | MathNTensorBase |
class | MathTensor |
class | MathVector |
class | MultiDimensionalHistogram |
a class for accumulating a histogram of one or more numeric variables More... | |
struct | NearestSelector |
Nearest function selector class for R non-integer or T integer. More... | |
struct | NearestSelector< R, T, true > |
Nearest function selector class for R integer and T non-integer. More... | |
struct | ModSelector |
Mod function selector class for non-integer types. More... | |
struct | ModSelector< T, true > |
Mod function selector class for integer types. More... | |
struct | ModuloSelector |
Modulo function selector class for non-integer types. More... | |
struct | ModuloSelector< T, true > |
Modulo function selector class for integer types. More... | |
struct | RemainderSelector |
Remainder function selector class for non-integer types. More... | |
struct | RemainderSelector< T, true > |
Remainder function selector class for integer types. More... | |
struct | FastRemainderSelector |
Fast remainder function selector class for non-integer types. More... | |
struct | FastRemainderSelector< T, true > |
Fast remainder function selector class for integer types. More... | |
struct | NumericTraits |
NumericTraits: Numeric type traits. More... | |
struct | NumericTraits< float > |
NumericTraits: Numeric type traits float specialization. More... | |
struct | NumericTraits< double > |
NumericTraits: Numeric type traits double specialization. More... | |
struct | NumericTraits< long double > |
NumericTraits: Numeric type traits long double specialization. More... | |
class | Polynomial_1d |
class | Quaternion |
Unit quaternion 3-D orientation representation. More... | |
class | RocPoint |
class | RocCurve |
class | sphericalVector |
sphericalVector: Fast spherical-coordinate numeric vector More... | |
struct | urs_Quat |
class | UniformRotationSampler |
class | VoxelArray |
class | VoxelGrid |
class | xyzMatrix |
xyzMatrix: Fast 3x3 xyz matrix template More... | |
class | xyzTransform |
struct | XformHash32 |
struct | XformHash64 |
struct | Xforms |
class | Py_xyzTransform_double |
class | xyzTriple |
Fast (x,y,z)-coordinate vector container. More... | |
class | xyzVector |
xyzVector: Fast (x,y,z)-coordinate numeric vector More... | |
Enumerations | |
enum | RocStatus { true_positive , true_negative , false_positive , false_negative } |
Functions | |
template<class T > | |
void | get_cluster_data (utility::vector1< T > &data_in, ClusteringTreeNodeOP cluster, utility::vector1< T > &data_out) |
template<typename T > | |
T | principal_angle (T const &angle) |
Principal value of angle in radians on ( -pi, pi ]. More... | |
template<typename T > | |
T | principal_angle_radians (T const &angle) |
Principal value of angle in radians on ( -pi, pi ]. More... | |
template<typename T > | |
T | principal_angle_degrees (T const &angle) |
Principal value of angle in degrees on ( -180, 180 ]. More... | |
template<typename T > | |
T | nonnegative_principal_angle (T const &angle) |
Positive principal value of angle in radians on [ 0, 2*pi ) More... | |
template<typename T > | |
T | nonnegative_principal_angle_radians (T const &angle) |
Positive principal value of angle in radians on [ 0, 2*pi ) More... | |
template<typename T > | |
T | nonnegative_principal_angle_degrees (T const &angle) |
Positive principal value of angle in degrees on [ 0, 360 ) More... | |
template<typename T > | |
T | nearest_angle (T const &angle, T const &base_angle) |
Nearest periodic value of angle to a base angle in radians. More... | |
template<typename T > | |
T | nearest_angle_radians (T const &angle, T const &base_angle) |
Nearest periodic value of angle to a base angle in radians. More... | |
template<typename T > | |
T | nearest_angle_degrees (T const &angle, T const &base_angle) |
Nearest periodic value of angle to a base angle in degrees. More... | |
template<typename T > | |
void | R2quat (xyzMatrix< T > const &R, Quaternion< T > &Q) |
Interconvert Quaternion <=> Rotation Matrix. More... | |
template<typename T > | |
void | quat2R (Quaternion< T > const &Q, xyzMatrix< T > &R) |
Interconvert Quaternion <=> Rotation Matrix. More... | |
template<typename T > | |
bool | operator== (BodyPosition< T > const &p1, BodyPosition< T > const &p2) |
BodyPosition == BodyPosition. More... | |
template<typename T > | |
bool | operator!= (BodyPosition< T > const &p1, BodyPosition< T > const &p2) |
BodyPosition != BodyPosition. More... | |
template<typename T > | |
std::ostream & | operator<< (std::ostream &stream, BodyPosition< T > const &p) |
stream << BodyPosition output operator More... | |
template<typename T > | |
std::istream & | operator>> (std::istream &stream, BodyPosition< T > &p) |
stream >> BodyPosition input operator More... | |
template<typename T > | |
std::istream & | read_row (std::istream &stream, T &x, T &y, T &z, T &t) |
Read an BodyPosition row from a stream. More... | |
void | do_add_symbol (CalculatorParser &cp, std::string name, double value) |
double | do_abs (double a) |
double | do_pow (double a, double b) |
double | do_exp (double a) |
double | do_ln (double a) |
double | do_log10 (double a) |
double | do_log2 (double a) |
double | do_log (double a, double b) |
double | do_sqrt (double a) |
double | do_sin (double a) |
double | do_cos (double a) |
double | do_tan (double a) |
double | do_max (std::vector< double > a) |
double | do_min (std::vector< double > a) |
double | do_mean (std::vector< double > a) |
double | do_median (std::vector< double > a) |
numeric::xyzVector< platform::Real > | rgb_to_hsv (platform::Real r, platform::Real b, platform::Real g) |
convert an RGB color to HSV More... | |
numeric::xyzVector< platform::Real > | rgb_to_hsv (numeric::xyzVector< platform::Real > rgb_triplet) |
convert and RGB color to HSV More... | |
numeric::xyzVector< platform::Real > | hsv_to_rgb (platform::Real h, platform::Real s, platform::Real v) |
convert an HSV color to RGB More... | |
numeric::xyzVector< platform::Real > | hsv_to_rgb (numeric::xyzVector< platform::Real > hsv_triplet) |
convert an HSV color to RGB More... | |
CubicPolynomial | cubic_polynomial_from_spline (platform::Real xlo, platform::Real xhi, SplineParameters const &sp) |
Compute cubic polynomial coefficients from a set of SplineParameters. More... | |
platform::Real | cubic_polynomial_deriv (platform::Real const x, CubicPolynomial const &cp) |
Evaluate derivative of cubic polynomial given x and polynomial coefficients. More... | |
platform::Real | eval_cubic_polynomial (platform::Real const x, CubicPolynomial const &cp) |
Evaluate cubic polynomial at value x given polynomial coefficients. More... | |
void | ccd_angle (utility::vector1< xyzVector< Real > > const &F, utility::vector1< xyzVector< Real > > const &M, xyzVector< Real > const &axis_atom, xyzVector< Real > const &theta_hat, Real &alpha, Real &S) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &stream, HomogeneousTransform< T > const &ht) |
std::ostream & | operator<< (std::ostream &stream, HomogeneousTransform< double > const &ht) |
template<class Value > | |
double | linear_interpolate (Value start, Value stop, unsigned curr_stage, unsigned num_stages) |
Linearly interpolates a quantity from start to stop over (num_stages + 1) stages. More... | |
template<typename T > | |
std::ostream & | operator<< (std::ostream &output, const IntervalSet< T > &interval) |
template<typename T > | |
MathMatrix< T > & | operator+= (MathMatrix< T > &MATRIX_LHS, const MathMatrix< T > &MATRIX_RHS) |
add one matrix to another More... | |
template<typename T > | |
MathMatrix< T > & | operator-= (MathMatrix< T > &MATRIX_LHS, const MathMatrix< T > &MATRIX_RHS) |
subtract one matrix from another More... | |
template<typename T > | |
MathMatrix< T > & | operator/= (MathMatrix< T > &MATRIX_LHS, const MathMatrix< T > &) |
divide one matrix by another More... | |
template<typename T > | |
MathMatrix< T > & | operator+= (MathMatrix< T > &MATRIX_LHS, const T &VALUE) |
add scalar to matrix More... | |
template<typename T > | |
MathMatrix< T > & | operator-= (MathMatrix< T > &MATRIX_LHS, const T &VALUE) |
subtract scalar from matrix More... | |
template<typename T > | |
MathMatrix< T > & | operator*= (MathMatrix< T > &MATRIX_LHS, const T &SCALAR) |
multiply matrix with scalar More... | |
template<typename T > | |
MathMatrix< T > & | operator/= (MathMatrix< T > &MATRIX_LHS, const T &SCALAR) |
divide matrix by scalar More... | |
template<typename T > | |
bool | operator== (const MathMatrix< T > &MATRIX_LHS, const MathMatrix< T > &MATRIX_RHS) |
compare to matricess for equality More... | |
template<typename T > | |
bool | operator!= (const MathMatrix< T > &MATRIX_LHS, const MathMatrix< T > &MATRIX_RHS) |
compare to matrices for inequality More... | |
template<typename T > | |
bool | operator== (const MathMatrix< T > &MATRIX_LHS, const T &VALUE_RHS) |
compare if all items in matrix are equal to a given VALUE More... | |
template<typename T > | |
bool | operator== (const T &VALUE_LHS, const MathMatrix< T > &MATRIX_RHS) |
compare if all items in matrix are equal to a given VALUE More... | |
template<typename T > | |
bool | operator!= (const MathMatrix< T > &MATRIX_LHS, const T &VALUE_RHS) |
compare if all items in matrix are not equal to a given VALUE More... | |
template<typename T > | |
bool | operator!= (const T &VALUE_LHS, const MathMatrix< T > &MATRIX_RHS) |
compare if all items in matrix are not equal to a given VALUE More... | |
template<typename T > | |
MathMatrix< T > | operator+ (const MathMatrix< T > &MATRIX_LHS, const MathMatrix< T > &MATRIX_RHS) |
sum two matrixs of equal size More... | |
template<typename T > | |
MathMatrix< T > | operator- (const MathMatrix< T > &MATRIX_LHS, const MathMatrix< T > &MATRIX_RHS) |
subtract two matrixs of equal size More... | |
template<typename T > | |
MathMatrix< T > | operator* (const MathMatrix< T > &MATRIX_LHS, const MathMatrix< T > &MATRIX_RHS) |
multiply two matrixs of equal size by building the inner product yielding the scalar product More... | |
template<typename T > | |
MathMatrix< T > | operator+ (const MathMatrix< T > &MATRIX_LHS, const T &VALUE_RHS) |
add value to matrix More... | |
template<typename T > | |
MathMatrix< T > | operator+ (const T &VALUE_LHS, const MathMatrix< T > &MATRIX_RHS) |
add matrix to value More... | |
template<typename T > | |
MathMatrix< T > | operator- (const MathMatrix< T > &MATRIX_LHS, const T &VALUE_RHS) |
subtract value from matrix More... | |
template<typename T > | |
MathMatrix< T > | operator- (const T &VALUE_LHS, const MathMatrix< T > &MATRIX_RHS) |
subtract matrix from value More... | |
template<typename T > | |
MathMatrix< T > | operator* (const T &SCALAR_LHS, const MathMatrix< T > &MATRIX_RHS) |
multiply scalar with matrix More... | |
template<typename T > | |
MathMatrix< T > | operator* (const MathMatrix< T > &MATRIX_LHS, const T &SCALAR_RHS) |
multiply matrix with scalar More... | |
template<typename T > | |
MathVector< T > | operator* (const MathMatrix< T > &MATRIX_LHS, const MathVector< T > &VECTOR_RHS) |
multiply matrix with vector More... | |
template<typename T > | |
MathMatrix< T > | operator/ (const MathMatrix< T > &MATRIX_LHS, const T &SCALAR_RHS) |
divide matrix with scalar More... | |
template<typename T > | |
MathMatrix< T > | operator/ (const T &SCALAR_LHS, const MathMatrix< T > &MATRIX_RHS) |
divide scalar by matrix More... | |
template<class T , numeric::Size N> | |
MathNTensorOP< T, N > | deep_copy (MathNTensor< T, N > const &source) |
template<class T , numeric::Size N> | |
bool | write_tensor_to_file_without_json (std::string const &filename, MathNTensor< T, N > const &tensor) |
template<class T , numeric::Size N> | |
void | read_tensor_from_file (std::string const &filename_input, MathNTensor< T, N > &tensor, utility::json_spirit::mObject &json) |
template<class T , numeric::Size N> | |
void | read_tensor_from_file (std::string const &filename, MathNTensor< T, N > &tensor) |
template<class T , numeric::Size N> | |
bool | write_tensor_to_file (std::string const &filename, MathNTensor< T, N > const &tensor, utility::json_spirit::Value const &json_input) |
template<class T , numeric::Size N> | |
bool | write_tensor_to_file (std::string const &filename, MathNTensor< T, N > const &tensor) |
template<class T > | |
MathNTensorBaseOP< T > | deep_copy (MathNTensorBase< T > const &source) |
template MathNTensorBaseOP< Real > | deep_copy (MathNTensorBase< Real > const &) |
Explicit template instantiation, apparently needed for PyRosetta. More... | |
template<typename T > | |
T | distance (MathVector< T > const &VECTOR_A, MathVector< T > const &VECTOR_B) |
template<typename T > | |
T | proj_angl (MathVector< T > const &VECTOR_A, MathVector< T > const &VECTOR_B, MathVector< T > const &VECTOR_C, MathVector< T > const &VECTOR_D) |
template<typename T > | |
T | proj_angl (MathVector< T > const &VECTOR_A, MathVector< T > const &VECTOR_B, MathVector< T > const &VECTOR_C) |
template<typename T > | |
T | proj_angl (MathVector< T > const &VECTOR_A, MathVector< T > const &VECTOR_B) |
template<typename T > | |
T | scalar_product (MathVector< T > const &VECTOR_A, MathVector< T > const &VECTOR_B) |
template<typename T > | |
MathVector< T > | MakeVector (T const &X) |
template<typename T > | |
MathVector< T > | MakeVector (T const &X, T const &Y) |
template<typename T > | |
MathVector< T > | MakeVector (T const &X, T const &Y, T const &Z) |
template<typename T > | |
MathVector< T > | operator- (MathVector< T > const &VECTOR) |
template<typename T > | |
MathVector< T > | operator+ (MathVector< T > const &VECTOR) |
template<typename T > | |
bool | operator== (MathVector< T > const &VECTOR_A, MathVector< T > const &VECTOR_B) |
template<typename T > | |
bool | operator!= (MathVector< T > const &VECTOR_A, MathVector< T > const &VECTOR_B) |
template<typename T > | |
bool | operator== (MathVector< T > const &VECTOR, T const &X) |
template<typename T > | |
bool | operator!= (MathVector< T > const &VECTOR, T const &X) |
template<typename T > | |
bool | operator== (T const &X, MathVector< T > const &VECTOR) |
template<typename T > | |
bool | operator!= (T const &X, MathVector< T > const &VECTOR) |
template<typename T > | |
MathVector< T > | operator+ (MathVector< T > const &VECTOR_A, MathVector< T > const &VECTOR_B) |
template<typename T > | |
MathVector< T > | operator- (MathVector< T > const &VECTOR_A, MathVector< T > const &VECTOR_B) |
template<typename T > | |
MathVector< T > | operator+ (MathVector< T > const &VECTOR, T const &X) |
template<typename T > | |
MathVector< T > | operator- (MathVector< T > const &VECTOR, T const &X) |
template<typename T > | |
MathVector< T > | operator+ (T const &X, MathVector< T > const &VECTOR) |
template<typename T > | |
MathVector< T > | operator- (T const &X, MathVector< T > const &VECTOR) |
template<typename T > | |
T | operator* (MathVector< T > const &VECTOR_A, MathVector< T > const &VECTOR_B) |
template<typename T > | |
MathVector< T > | operator* (T const &X, MathVector< T > const &VECTOR) |
template<typename T > | |
MathVector< T > | operator* (MathVector< T > const &VECTOR, T const &X) |
template<typename T > | |
MathVector< T > | operator/ (MathVector< T > const &VECTOR, T const &X) |
template<typename T > | |
MathVector< T > | operator/ (MathVector< T > const &VECTOR_A, MathVector< T > const &VECTOR_B) |
template<typename T > | |
MathVector< T > | operator/ (T const &X, MathVector< T > const &VECTOR) |
template<typename T > | |
MathVector< T > | operator^ (T const &X, MathVector< T > const &VECTOR) |
std::ostream & | operator<< (std::ostream &os, MultiDimensionalHistogram const &mdhist) |
short int | min (short int const a, short int const b) |
min( short int, short int ) More... | |
int | min (int const a, int const b) |
min( int, int ) More... | |
long int | min (long int const a, long int const b) |
min( long int, long int ) More... | |
unsigned short int | min (unsigned short int const a, unsigned short int const b) |
min( unsigned short int, unsigned short int ) More... | |
unsigned int | min (unsigned int const a, unsigned int const b) |
min( unsigned int, unsigned int ) More... | |
unsigned long int | min (unsigned long int const a, unsigned long int const b) |
min( unsigned long int, unsigned long int ) More... | |
float | min (float const a, float const b) |
min( float, float ) More... | |
double | min (double const a, double const b) |
min( double, double ) More... | |
long double | min (long double const a, long double const b) |
min( long double, long double ) More... | |
template<typename T > | |
T const & | min (T const &a, T const &b, T const &c) |
min( a, b, c ) More... | |
template<typename T > | |
T const & | min (T const &a, T const &b, T const &c, T const &d) |
min( a, b, c, d ) More... | |
template<typename T > | |
T const & | min (T const &a, T const &b, T const &c, T const &d, T const &e) |
min( a, b, c, d, e ) More... | |
template<typename T > | |
T const & | min (T const &a, T const &b, T const &c, T const &d, T const &e, T const &f) |
min( a, b, c, d, e, f ) More... | |
short int | max (short int const a, short int const b) |
max( short int, short int ) More... | |
int | max (int const a, int const b) |
max( int, int ) More... | |
long int | max (long int const a, long int const b) |
max( long int, long int ) More... | |
unsigned short int | max (unsigned short int const a, unsigned short int const b) |
max( unsigned short int, unsigned short int ) More... | |
unsigned int | max (unsigned int const a, unsigned int const b) |
max( unsigned int, unsigned int ) More... | |
unsigned long int | max (unsigned long int const a, unsigned long int const b) |
max( unsigned long int, unsigned long int ) More... | |
float | max (float const a, float const b) |
max( float, float ) More... | |
double | max (double const a, double const b) |
max( double, double ) More... | |
long double | max (long double const a, long double const b) |
max( long double, long double ) More... | |
template<typename T > | |
T const & | max (T const &a, T const &b, T const &c) |
max( a, b, c ) More... | |
template<typename T > | |
T const & | max (T const &a, T const &b, T const &c, T const &d) |
max( a, b, c, d ) More... | |
template<typename T > | |
T const & | max (T const &a, T const &b, T const &c, T const &d, T const &e) |
max( a, b, c, d, e ) More... | |
template<typename T > | |
T const & | max (T const &a, T const &b, T const &c, T const &d, T const &e, T const &f) |
max( a, b, c, d, e, f ) More... | |
template<typename T > | |
T | square (T const &x) |
square( x ) == x^2 More... | |
template<typename T > | |
T | cube (T const &x) |
cube( x ) == x^3 More... | |
template<typename T > | |
int | sign (T const &x) |
sign( x ) More... | |
template<typename S , typename T > | |
T | sign_transfered (S const &sigma, T const &x) |
Sign transfered value. More... | |
template<typename T > | |
T | abs_difference (T const &a, T const &b) |
Absolute difference. More... | |
template<typename R , typename T > | |
R | nearest (T const &x) |
nearest< R >( x ): Nearest R More... | |
template<typename T > | |
std::size_t | nearest_size (T const &x) |
nearest_size( x ): Nearest std::size_t More... | |
template<typename T > | |
SSize | nearest_ssize (T const &x) |
nearest_ssize( x ): Nearest SSize More... | |
template<typename T > | |
int | nearest_int (T const &x) |
nearest_int( x ): Nearest int More... | |
template<typename T > | |
int | nint (T const &x) |
nint( x ): Nearest int More... | |
template<typename T > | |
T | mod (T const &x, T const &y) |
x(mod y) computational modulo returning magnitude < | y | and sign of x More... | |
template<typename T > | |
T | modulo (T const &x, T const &y) |
x(mod y) mathematical modulo returning magnitude < | y | and sign of y More... | |
template<typename T > | |
T | remainder (T const &x, T const &y) |
Remainder of x with respect to division by y that is of smallest magnitude. More... | |
template<typename T > | |
T | fast_remainder (T const &x, T const &y) |
Remainder of x with respect to division by y that is of smallest magnitude. More... | |
template<typename T , typename S > | |
T | remainder_conversion (T const &t, S &s) |
Remainder and result of conversion to a different type. More... | |
template<typename T > | |
T | gcd (T const &m, T const &n) |
Greatest common divisor. More... | |
template<typename T > | |
bool | eq_tol (T const &x, T const &y, T const &r_tol, T const &a_tol) |
Equal within specified relative and absolute tolerances? More... | |
template<typename T > | |
bool | lt_tol (T const &x, T const &y, T const &r_tol, T const &a_tol) |
Less than within specified relative and absolute tolerances? More... | |
template<typename T > | |
bool | le_tol (T const &x, T const &y, T const &r_tol, T const &a_tol) |
Less than or equal within specified relative and absolute tolerances? More... | |
template<typename T > | |
bool | ge_tol (T const &x, T const &y, T const &r_tol, T const &a_tol) |
Greater than or equal within specified relative and absolute tolerances? More... | |
template<typename T > | |
bool | gt_tol (T const &x, T const &y, T const &r_tol, T const &a_tol) |
Greater than within specified relative and absolute tolerances? More... | |
template<typename T > | |
T | factorial (T const &N) |
Calculate the value of N!. More... | |
template<typename T > | |
xyzVector< T > | first_principal_component (utility::vector1< xyzVector< T > > const &coords) |
return the first principal component of the given set of points More... | |
template<typename T > | |
xyzMatrix< T > | principal_components (utility::vector1< xyzVector< T > > const &coords) |
return a matrix containing the first 3 principal components of the given set of points. Matrix columns are principal components, first column is first component, etc. More... | |
template<typename T > | |
xyzVector< T > | principal_component_eigenvalues (utility::vector1< xyzVector< T > > const &coords) |
return a vector containing the eigenvalues corresponding to the first 3 principal components of the given set of points. More... | |
template<typename T > | |
std::pair< xyzMatrix< T >, xyzVector< T > > | principal_components_and_eigenvalues (utility::vector1< xyzVector< T > > const &coords) |
return a pair containing a matrix of the first 3 principal components and a vector of the corresponding eigenvalues of the given set of points. More... | |
std::pair< utility::vector1< utility::vector1< Real > >, utility::vector1< Real > > | principal_components_and_eigenvalues_ndimensions (utility::vector1< utility::vector1< Real > > const &coords, bool const shift_center) |
Return a pair containing a matrix (vector of vectors) of all of the principal components and a vector of the corresponding eigenvalues of the given set of points in n-dimensional space. More... | |
ostream & | operator<< (ostream &out, const Polynomial_1d &poly) |
void | read_probabilities_or_die (const std::string &filename, utility::vector1< double > *probs) |
Loads normalized, per-residue probabilities from filename, storing the result in probs. Assumes line i holds the probability of sampling residue i. There must be 1 line for each residue in the pose on which this data will be used. More... | |
void | print_probabilities (const utility::vector1< double > &probs, std::ostream &out) |
Writes probs to the specified ostream. More... | |
template<class InputIterator > | |
double | sum (InputIterator first, InputIterator last) |
Returns the sum of all elements on the range [first, last) More... | |
template<class InputIterator > | |
void | normalize (InputIterator first, InputIterator last) |
Normalizes elements on the range [first, last) More... | |
template<class RandomAccessIterator > | |
void | cumulative (RandomAccessIterator first, RandomAccessIterator last) |
Converts pdf to cdf. More... | |
template<class ForwardIterator > | |
void | product (ForwardIterator probs1_first, ForwardIterator probs1_last, ForwardIterator probs2_first, ForwardIterator probs2_last) |
Multiplies two probability vectors with one another. Probability vectors are assumed to have equal lengths. More... | |
template<typename T > | |
std::ostream & | operator<< (std::ostream &stream, Quaternion< T > const &q) |
stream << Quaternion output operator More... | |
template<typename T > | |
std::istream & | operator>> (std::istream &stream, Quaternion< T > &q) |
stream >> Quaternion input operator More... | |
template<typename T > | |
T | sec (T const &x) |
Secant. More... | |
template<typename T > | |
T | csc (T const &x) |
Cosecant. More... | |
template<typename T > | |
T | cot (T const &x) |
Cotangent. More... | |
template<typename T > | |
bool | in_sin_cos_range (T const &x, T const &tol=T(.001)) |
Is a sine or cosine value within a specified tolerance of the valid [-1,1] range? More... | |
template<typename T > | |
T | sin_cos_range (T const &x, T const &tol=T(.001)) |
Adjust a sine or cosine value to the valid [-1,1] range if within a specified tolerance or exit with an error. More... | |
template<typename T > | |
T | arccos (T const x) |
like std::acos but with range checking More... | |
double | urs_norm4 (double a, double b, double c, double d) |
platform::Real | urs_R2ang (numeric::xyzMatrix< Real > R) |
numeric::Real | median (utility::vector1< numeric::Real > const &values) |
Returns the median from a vector1 of Real values. More... | |
numeric::Real | mean (utility::vector1< numeric::Real > const &values) |
Real & | access_Real_MathNTensor (MathNTensorBaseOP< Real > tensorbase, utility::vector1< Size > const &position) |
Utility function to access an entry in a MathNTensor of arbitrary dimensionality unknown at compile time, given a MathNTensorBaseOP. More... | |
Real const & | const_access_Real_MathNTensor (MathNTensorBaseCOP< Real > tensorbase, utility::vector1< Size > const &position) |
Utility function to access an entry in a MathNTensor of arbitrary dimensionality unknown at compile time, given a MathNTensorBaseCOP. More... | |
Size | get_Real_MathNTensor_dimension_size (MathNTensorBaseCOP< Real > tensorbase, Size const dimension_index) |
Given a MathNTensorBaseCOP, get the size along one dimension. More... | |
template<typename Number > | |
Number | clamp (Number value, Number lower_bound, Number upper_bound) |
Clamps to the closed interval [lower_bound, upper_bound]. Templated type must implement operator<. More... | |
double | log (double x, double base) |
Computes log(x) in the given base. More... | |
bool | equal_by_epsilon (numeric::Real value1, numeric::Real value2, numeric::Real epsilon) |
are two Real values are equal up to some epsilon More... | |
template<typename T > | |
T | max (utility::vector1< T > const &values) |
template<typename T > | |
T | min (utility::vector1< T > const &values) |
Real | boltzmann_accept_probability (Real const score_before, Real const score_after, Real const temperature) |
Calculates the acceptance probability of a given score-change at the given temperature, generally used in simulated annealing algorithms. Returns a value in the range (0-1). More... | |
template<typename T > | |
T | find_nearest_value (typename utility::vector1< T > const &input_list, T key, platform::Size min_index, platform::Size max_index) |
recursive binary search that finds the value closest to key. Call find_nearest_value(input_list,value) instead. It's the driver function for this function. This fails miserably (and silently!) on a non-sorted vector, so don't do that!. More... | |
template<typename T > | |
T | find_nearest_value (typename utility::vector1< T > const &input_list, T key) |
given a vector and an input value, return the value in the vector that is closest to the input This is a wrapper for find_nearest_value(input_list,key,min,max) and insures that you're sorted. More... | |
template<class F , class V > | |
std::ostream & | operator<< (std::ostream &out, VoxelArray< F, V > const &v) |
template<typename T > | |
T | wrap_2pi (T const &angle) |
Wrap the given angle in the range [0, 2 * pi). More... | |
template<typename T > | |
T | wrap_pi (T const &angle) |
Wrap the given angle in the range [-pi, pi). More... | |
template<typename T > | |
T | wrap_360 (T const &angle) |
Wrap the given angle in the range [0, 360). More... | |
template<typename T > | |
T | wrap_180 (T const &angle) |
Wrap the given angle in the range [-180, 180). More... | |
template<typename T > | |
xyzVector< T > | operator* (xyzMatrix< T > const &m, xyzVector< T > const &v) |
template<typename T > | |
xyzVector< T > | product (xyzMatrix< T > const &m, xyzVector< T > const &v) |
xyzMatrix * xyzVector product More... | |
template<typename T > | |
xyzVector< T > & | inplace_product (xyzMatrix< T > const &m, xyzVector< T > &v) |
xyzMatrix * xyzVector in-place product More... | |
template<typename T > | |
xyzVector< T > | transpose_product (xyzMatrix< T > const &m, xyzVector< T > const &v) |
xyzMatrix^T * xyzVector product More... | |
template<typename T > | |
xyzVector< T > & | inplace_transpose_product (xyzMatrix< T > const &m, xyzVector< T > &v) |
xyzMatrix^T * xyzVector in-place transpose product More... | |
template<typename T > | |
xyzMatrix< T > | outer_product (xyzVector< T > const &a, xyzVector< T > const &b) |
xyzVector xyzVector outer product More... | |
template<typename T > | |
xyzMatrix< T > | inverse (xyzMatrix< T > const &a) |
template<typename T > | |
xyzMatrix< T > | projection_matrix (xyzVector< T > const &v) |
geometric center More... | |
template<typename T > | |
void | dihedral_radians (xyzVector< T > const &p1, xyzVector< T > const &p2, xyzVector< T > const &p3, xyzVector< T > const &p4, T &angle) |
Dihedral (torsion) angle in radians: angle value passed. More... | |
template<typename T > | |
T | dihedral_radians (xyzVector< T > const &p1, xyzVector< T > const &p2, xyzVector< T > const &p3, xyzVector< T > const &p4) |
Dihedral (torsion) angle in radians: angle value returned. More... | |
template<typename T > | |
void | dihedral_degrees (xyzVector< T > const &p1, xyzVector< T > const &p2, xyzVector< T > const &p3, xyzVector< T > const &p4, T &angle) |
Dihedral (torsion) angle in degrees: angle value passed. More... | |
template<typename T > | |
T | dihedral_degrees (xyzVector< T > const &p1, xyzVector< T > const &p2, xyzVector< T > const &p3, xyzVector< T > const &p4) |
Dihedral (torsion) angle in degrees: angle value returned. More... | |
template<typename T > | |
void | dihedral (xyzVector< T > const &p1, xyzVector< T > const &p2, xyzVector< T > const &p3, xyzVector< T > const &p4, T &angle) |
Dihedral (torsion) angle in degrees: angle value passed. More... | |
template<typename T > | |
T | dihedral (xyzVector< T > const &p1, xyzVector< T > const &p2, xyzVector< T > const &p3, xyzVector< T > const &p4) |
Dihedral (torsion) angle in degrees: angle value returned. More... | |
template<typename T > | |
xyzMatrix< T > | rotation_matrix (xyzVector< T > const &axis, T const &theta) |
Rotation matrix for rotation about an axis by an angle in radians. More... | |
template<typename T > | |
xyzVector< T > | rotation_axis (xyzMatrix< T > const &R, T &theta) |
Transformation from rotation matrix to helical axis of rotation. More... | |
template<typename T > | |
xyzVector< T > | rotation_axis_angle (xyzMatrix< T > const &R) |
Transformation from rotation matrix to compact axis-angle representation. More... | |
template<typename T > | |
xyzVector< T > | eigenvalue_jacobi (xyzMatrix< T > const &a, T const &tol) |
Classic Jacobi algorithm for the eigenvalues of a real symmetric matrix. More... | |
template<typename T > | |
xyzVector< T > | eigenvector_jacobi (xyzMatrix< T > const &a, T const &tol, xyzMatrix< T > &J) |
Classic Jacobi algorithm for the eigenvalues and eigenvectors of a real symmetric matrix. More... | |
template<typename T > | |
void | jacobi_rotation (xyzMatrix< T > const &m, int const i, int const j, xyzMatrix< T > &r) |
Jacobi rotation. More... | |
template<typename T > | |
sphericalVector< T > | xyz_to_spherical (xyzVector< T > const &xyz) |
template<typename T > | |
xyzVector< T > | spherical_to_xyz (sphericalVector< T > const &spherical) |
template<typename T > | |
xyzVector< T > | closest_point_on_line (xyzVector< T > const &p1, xyzVector< T > const &p2, xyzVector< T > const &q) |
xyzMatrix * xyzVector More... | |
template<typename T > | |
xyzVector< T > | center_of_mass (utility::vector1< xyzVector< T > > const &coords) |
calculate center of mass for coordinates More... | |
template<typename U > | |
U | angle_of (xyzVector< U > const &a, xyzVector< U > const &b) |
Angle between two vectors (in radians on [ 0, pi ]) More... | |
template<typename U > | |
U | angle_of (xyzVector< U > const &a, xyzVector< U > const &b, xyzVector< U > const &c) |
Angle formed by three consecutive points (in radians on [ 0, pi ]) More... | |
template<typename U > | |
U | cos_of (xyzVector< U > const &a, xyzVector< U > const &b) |
Cosine of angle between two vectors. More... | |
template<typename U > | |
U | cos_of (xyzVector< U > const &a, xyzVector< U > const &b, xyzVector< U > const &c) |
Cosine of angle formed by three consecutive points. More... | |
template<typename U > | |
U | sin_of (xyzVector< U > const &a, xyzVector< U > const &b) |
Sine of angle between two vectors. More... | |
template<typename U > | |
U | sin_of (xyzVector< U > const &a, xyzVector< U > const &b, xyzVector< U > const &c) |
Sine of angle formed by three consecutive points. More... | |
template<typename T > | |
void | angle_radians (xyzVector< T > const &p1, xyzVector< T > const &p2, xyzVector< T > const &p3, T &angle) |
Plane angle in radians: angle value passed. More... | |
template<typename T > | |
T | angle_radians (xyzVector< T > const &p1, xyzVector< T > const &p2, xyzVector< T > const &p3) |
Plane angle in radians: angle value returned. More... | |
double | angle_radians_double (xyzVector< double > const &p1, xyzVector< double > const &p2, xyzVector< double > const &p3) |
template<typename T > | |
T | angle_degrees (xyzVector< T > const &p1, xyzVector< T > const &p2, xyzVector< T > const &p3) |
Plane angle in degrees: angle value returned. More... | |
double | angle_degrees_double (xyzVector< double > const &p1, xyzVector< double > const &p2, xyzVector< double > const &p3) |
template<typename T > | |
T | angle_radians (xyzVector< T > const &p1, xyzVector< T > const &p2, xyzVector< T > const &p3, xyzVector< T > const &p4) |
Angle between two vectors in radians. More... | |
double | angle_radians_double (xyzVector< double > const &p1, xyzVector< double > const &p2, xyzVector< double > const &p3, xyzVector< double > const &p4) |
template<typename T > | |
T | angle_degrees (xyzVector< T > const &p1, xyzVector< T > const &p2, xyzVector< T > const &p3, xyzVector< T > const &p4) |
Angle between two vectors in radians. More... | |
double | angle_degrees_double (xyzVector< double > const &p1, xyzVector< double > const &p2, xyzVector< double > const &p3, xyzVector< double > const &p4) |
void | dihedral_radians_double (xyzVector< double > const &p1, xyzVector< double > const &p2, xyzVector< double > const &p3, xyzVector< double > const &p4, double &angle) |
double | dihedral_radians_double (xyzVector< double > const &p1, xyzVector< double > const &p2, xyzVector< double > const &p3, xyzVector< double > const &p4) |
void | dihedral_degrees_double (xyzVector< double > const &p1, xyzVector< double > const &p2, xyzVector< double > const &p3, xyzVector< double > const &p4, double &angle) |
double | dihedral_degrees_double (xyzVector< double > const &p1, xyzVector< double > const &p2, xyzVector< double > const &p3, xyzVector< double > const &p4) |
void | dihedral_double (xyzVector< double > const &p1, xyzVector< double > const &p2, xyzVector< double > const &p3, xyzVector< double > const &p4, double &angle) |
double | dihedral_double (xyzVector< double > const &p1, xyzVector< double > const &p2, xyzVector< double > const &p3, xyzVector< double > const &p4) |
template<typename T > | |
xyzMatrix< T > | rotation_matrix (xyzVector< T > const &axis_angle) |
template<typename T > | |
xyzMatrix< T > | rotation_matrix_radians (xyzVector< T > const &axis, T const &theta) |
Rotation matrix for rotation about an axis by an angle in radians. More... | |
template<typename T > | |
xyzMatrix< T > | rotation_matrix_degrees (xyzVector< T > const &axis, T const &theta) |
Rotation matrix for rotation about an axis by an angle in degrees. More... | |
template<typename T > | |
xyzMatrix< T > | x_rotation_matrix (T const &theta) |
Rotation matrix for rotation about the x axis by an angle in radians. More... | |
template<typename T > | |
xyzMatrix< T > | x_rotation_matrix_radians (T const &theta) |
Rotation matrix for rotation about the x axis by an angle in radians. More... | |
template<typename T > | |
xyzMatrix< T > | x_rotation_matrix_degrees (T const &theta) |
Rotation matrix for rotation about the x axis by an angle in degrees. More... | |
template<typename T > | |
xyzMatrix< T > | y_rotation_matrix (T const &theta) |
Rotation matrix for rotation about the y axis by an angle in radians. More... | |
template<typename T > | |
xyzMatrix< T > | y_rotation_matrix_radians (T const &theta) |
Rotation matrix for rotation about the y axis by an angle in radians. More... | |
template<typename T > | |
xyzMatrix< T > | y_rotation_matrix_degrees (T const &theta) |
Rotation matrix for rotation about the y axis by an angle in degrees. More... | |
template<typename T > | |
xyzMatrix< T > | z_rotation_matrix (T const &theta) |
Rotation matrix for rotation about the z axis by an angle in radians. More... | |
template<typename T > | |
xyzMatrix< T > | z_rotation_matrix_radians (T const &theta) |
Rotation matrix for rotation about the z axis by an angle in radians. More... | |
template<typename T > | |
xyzMatrix< T > | z_rotation_matrix_degrees (T const &theta) |
Rotation matrix for rotation about the z axis by an angle in degrees. More... | |
template<typename T > | |
xyzMatrix< T > | alignVectorSets (xyzVector< T > A1, xyzVector< T > B1, xyzVector< T > A2, xyzVector< T > B2) |
Helper function to find the rotation to optimally transform the vectors A1-B1 to vectors A2-B2. More... | |
template<typename T > | |
T | rotation_angle (xyzMatrix< T > const &R) |
Transformation from rotation matrix to magnitude of helical rotation. More... | |
template<typename T > | |
xyzVector< T > | comma_seperated_string_to_xyz (std::string triplet) |
convert a string of comma separated values "0.2,0.4,0.3" to an xyzVector More... | |
template<typename T > | |
ObjexxFCL::FArray2D< T > | vector_of_xyzvectors_to_FArray (utility::vector1< xyzVector< T > > const &input) |
convert a vector1 of xyzVectors to an FArray2D More... | |
template<typename T > | |
utility::vector1< xyzVector< T > > | FArray_to_vector_of_xyzvectors (ObjexxFCL::FArray2D< T > const &input) |
convert an FArray2D to a vector of xyzVectors More... | |
template<typename T > | |
numeric::xyzMatrix< T > | FArray_to_xyzmatrix (ObjexxFCL::FArray2D< T > const &input) |
convert a 3x3 FArray 2D to an xyzMatrix More... | |
template<typename T > | |
ObjexxFCL::FArray2D< T > | xyzmatrix_to_FArray (numeric::xyzMatrix< T > const &input) |
convert an xyzMatrix to a 3x3 FArray 2D More... | |
template<typename T > | |
void | angles_between_0_180 (xyzVector< T > &angles) |
template<typename T > | |
xyzMatrix< T > | rotation_matrix_from_euler_angles_ZYZ (xyzVector< T > const &angles) |
template<typename T > | |
xyzMatrix< T > | rotation_matrix_from_euler_angles_ZXZ (xyzVector< T > const &angles) |
template<typename T > | |
xyzMatrix< T > | rotation_matrix_from_euler_angles_ZYX (xyzVector< T > const &angles) |
template<typename T > | |
xyzVector< T > | euler_angles_from_rotation_matrix_ZYZ (xyzMatrix< T > const &rotM) |
template<typename T > | |
xyzVector< T > | euler_angles_from_rotation_matrix_ZXZ (xyzMatrix< T > const &rotM) |
template<typename T > | |
xyzVector< T > | euler_angles_from_rotation_matrix_ZYX (xyzMatrix< T > const &rotM) |
template<typename T > | |
void | to_json (nlohmann::json &j, const xyzVector< T > &v) |
template<typename T > | |
void | from_json (const nlohmann::json &j, xyzVector< T > &v) |
template<typename T > | |
utility::json_spirit::Value | serialize (xyzVector< T > coords) |
Convert vector to a json_spirit Value. More... | |
template<typename T > | |
xyzVector< T > | deserialize (utility::json_spirit::mArray data) |
template<typename T > | |
xyzMatrix< T > | operator+ (T const &t, xyzMatrix< T > const &m) |
T + xyzMatrix. More... | |
template<typename T > | |
xyzMatrix< T > | operator- (T const &t, xyzMatrix< T > const &m) |
T - xyzMatrix. More... | |
template<typename T > | |
xyzMatrix< T > | operator* (T const &t, xyzMatrix< T > const &m) |
T * xyzMatrix. More... | |
template<typename T > | |
bool | operator== (xyzMatrix< T > const &a, xyzMatrix< T > const &b) |
xyzMatrix == xyzMatrix More... | |
template<typename T > | |
bool | operator!= (xyzMatrix< T > const &a, xyzMatrix< T > const &b) |
xyzMatrix != xyzMatrix More... | |
template<typename T > | |
bool | operator< (xyzMatrix< T > const &a, xyzMatrix< T > const &b) |
xyzMatrix < xyzMatrix More... | |
template<typename T > | |
bool | operator<= (xyzMatrix< T > const &a, xyzMatrix< T > const &b) |
xyzMatrix <= xyzMatrix More... | |
template<typename T > | |
bool | operator>= (xyzMatrix< T > const &a, xyzMatrix< T > const &b) |
xyzMatrix >= xyzMatrix More... | |
template<typename T > | |
bool | operator> (xyzMatrix< T > const &a, xyzMatrix< T > const &b) |
xyzMatrix > xyzMatrix More... | |
template<typename T > | |
bool | operator== (xyzMatrix< T > const &m, T const &t) |
xyzMatrix == T More... | |
template<typename T > | |
bool | operator!= (xyzMatrix< T > const &m, T const &t) |
xyzMatrix != T More... | |
template<typename T > | |
bool | operator< (xyzMatrix< T > const &m, T const &t) |
xyzMatrix < T More... | |
template<typename T > | |
bool | operator<= (xyzMatrix< T > const &m, T const &t) |
xyzMatrix <= T More... | |
template<typename T > | |
bool | operator>= (xyzMatrix< T > const &m, T const &t) |
xyzMatrix >= T More... | |
template<typename T > | |
bool | operator> (xyzMatrix< T > const &m, T const &t) |
xyzMatrix > T More... | |
template<typename T > | |
bool | operator== (T const &t, xyzMatrix< T > const &m) |
T == xyzMatrix. More... | |
template<typename T > | |
bool | operator!= (T const &t, xyzMatrix< T > const &m) |
T != xyzMatrix. More... | |
template<typename T > | |
bool | operator< (T const &t, xyzMatrix< T > const &m) |
T < xyzMatrix. More... | |
template<typename T > | |
bool | operator<= (T const &t, xyzMatrix< T > const &m) |
T <= xyzMatrix. More... | |
template<typename T > | |
bool | operator>= (T const &t, xyzMatrix< T > const &m) |
T >= xyzMatrix. More... | |
template<typename T > | |
bool | operator> (T const &t, xyzMatrix< T > const &m) |
T > xyzMatrix. More... | |
template<typename T > | |
std::ostream & | operator<< (std::ostream &stream, xyzMatrix< T > const &m) |
stream << xyzMatrix output operator More... | |
template<typename T > | |
std::istream & | read_row (std::istream &stream, T &x, T &y, T &z) |
Read an xyzMatrix row from a stream. More... | |
template<typename T > | |
std::istream & | operator>> (std::istream &stream, xyzMatrix< T > &m) |
stream >> xyzMatrix input operator More... | |
template<typename T , class OutputIterator > | |
void | expand_xforms (OutputIterator container, xyzTransform< T > const &G1, xyzTransform< T > const &G2, xyzTransform< T > const &, int N=5, Real r=9e9, xyzVector< T > const &test_point=xyzVector< T >(Real(1.0), Real(3.0), Real(10.0))) |
template<typename T , class OutputIterator > | |
void | expand_xforms (OutputIterator container, xyzTransform< T > const &G1, xyzTransform< T > const &G2, int N=5, Real r=9e9, xyzVector< T > const &test_point=xyzVector< T >(Real(1.0), Real(3.0), Real(10.0))) |
template<typename T > | |
std::ostream & | operator<< (std::ostream &stream, xyzTransform< T > const &m) |
stream << xyzTransform output operator More... | |
template<typename T > | |
std::istream & | operator>> (std::istream &stream, xyzTransform< T > &m) |
stream >> xyzTransform input operator More... | |
template<typename T > | |
xyzTriple< T > | operator+ (xyzTriple< T > const &a, xyzTriple< T > const &b) |
xyzTriple + xyzTriple More... | |
template<typename T > | |
xyzTriple< T > | operator+ (xyzTriple< T > const &v, T const &t) |
xyzTriple + T More... | |
template<typename T > | |
xyzTriple< T > | operator+ (T const &t, xyzTriple< T > const &v) |
T + xyzTriple. More... | |
template<typename T > | |
xyzTriple< T > | operator- (xyzTriple< T > const &a, xyzTriple< T > const &b) |
xyzTriple - xyzTriple More... | |
template<typename T > | |
xyzTriple< T > | operator- (xyzTriple< T > const &v, T const &t) |
xyzTriple - T More... | |
template<typename T > | |
xyzTriple< T > | operator- (T const &t, xyzTriple< T > const &v) |
T - xyzTriple. More... | |
template<typename T > | |
xyzTriple< T > | operator* (xyzTriple< T > const &v, T const &t) |
xyzTriple * T More... | |
template<typename T > | |
xyzTriple< T > | operator* (T const &t, xyzTriple< T > const &v) |
T * xyzTriple. More... | |
template<typename T > | |
xyzTriple< T > | operator/ (xyzTriple< T > const &v, T const &t) |
xyzTriple / T More... | |
template<typename T > | |
void | add (xyzTriple< T > const &a, xyzTriple< T > const &b, xyzTriple< T > &r) |
Add: xyzTriple + xyzTriple. More... | |
template<typename T > | |
void | add (xyzTriple< T > const &v, T const &t, xyzTriple< T > &r) |
Add: xyzTriple + T. More... | |
template<typename T > | |
void | add (T const &t, xyzTriple< T > const &v, xyzTriple< T > &r) |
Add: T + xyzTriple. More... | |
template<typename T > | |
void | subtract (xyzTriple< T > const &a, xyzTriple< T > const &b, xyzTriple< T > &r) |
Subtract: xyzTriple - xyzTriple. More... | |
template<typename T > | |
void | subtract (xyzTriple< T > const &v, T const &t, xyzTriple< T > &r) |
Subtract: xyzTriple - T. More... | |
template<typename T > | |
void | subtract (T const &t, xyzTriple< T > const &v, xyzTriple< T > &r) |
Subtract: T - xyzTriple. More... | |
template<typename T > | |
void | multiply (xyzTriple< T > const &v, T const &t, xyzTriple< T > &r) |
Multiply: xyzTriple * T. More... | |
template<typename T > | |
void | multiply (T const &t, xyzTriple< T > const &v, xyzTriple< T > &r) |
Multiply: T * xyzTriple. More... | |
template<typename T > | |
void | divide (xyzTriple< T > const &v, T const &t, xyzTriple< T > &r) |
Divide: xyzTriple / T. More... | |
template<typename T > | |
xyzTriple< T > | min (xyzTriple< T > const &a, xyzTriple< T > const &b) |
xyzTriple with min coordinates of two xyzTriples More... | |
template<typename T > | |
xyzTriple< T > | max (xyzTriple< T > const &a, xyzTriple< T > const &b) |
xyzTriple with max coordinates of two xyzTriples More... | |
template<typename T > | |
T | distance (xyzTriple< T > const &a, xyzTriple< T > const &b) |
Distance. More... | |
template<typename T > | |
T | distance_squared (xyzTriple< T > const &a, xyzTriple< T > const &b) |
Distance squared. More... | |
template<typename T > | |
T | dot (xyzTriple< T > const &a, xyzTriple< T > const &b) |
Dot product. More... | |
template<typename T > | |
T | dot_product (xyzTriple< T > const &a, xyzTriple< T > const &b) |
Dot product. More... | |
template<typename T > | |
T | inner_product (xyzTriple< T > const &a, xyzTriple< T > const &b) |
Inner product ( == dot product ) More... | |
template<typename T > | |
xyzTriple< T > | cross (xyzTriple< T > const &a, xyzTriple< T > const &b) |
Cross product. More... | |
template<typename T > | |
xyzTriple< T > | cross_product (xyzTriple< T > const &a, xyzTriple< T > const &b) |
Cross product. More... | |
template<typename T > | |
void | cross (xyzTriple< T > const &a, xyzTriple< T > const &b, xyzTriple< T > &c) |
Cross product: Return via argument (slightly faster) More... | |
template<typename T > | |
void | cross_product (xyzTriple< T > const &a, xyzTriple< T > const &b, xyzTriple< T > &c) |
Cross product: Return via argument (slightly faster) More... | |
template<typename T > | |
xyzTriple< T > | midpoint (xyzTriple< T > const &a, xyzTriple< T > const &b) |
Midpoint of 2 xyzTriples. More... | |
template<typename T > | |
void | midpoint (xyzTriple< T > const &a, xyzTriple< T > const &b, xyzTriple< T > &m) |
Midpoint of 2 xyzTriples: Return via argument (slightly faster) More... | |
template<typename T > | |
xyzTriple< T > | center (xyzTriple< T > const &a, xyzTriple< T > const &b) |
Center of 2 xyzTriples. More... | |
template<typename T > | |
void | center (xyzTriple< T > const &a, xyzTriple< T > const &b, xyzTriple< T > &m) |
Center of 2 xyzTriples: Return via argument (slightly faster) More... | |
template<typename T > | |
xyzTriple< T > | center (xyzTriple< T > const &a, xyzTriple< T > const &b, xyzTriple< T > const &c) |
Center of 3 xyzTriples. More... | |
template<typename T > | |
void | center (xyzTriple< T > const &a, xyzTriple< T > const &b, xyzTriple< T > const &c, xyzTriple< T > &m) |
Center of 3 xyzTriples: Return via argument (slightly faster) More... | |
template<typename T > | |
xyzTriple< T > | center (xyzTriple< T > const &a, xyzTriple< T > const &b, xyzTriple< T > const &c, xyzTriple< T > const &d) |
Center of 4 xyzTriples. More... | |
template<typename T > | |
void | center (xyzTriple< T > const &a, xyzTriple< T > const &b, xyzTriple< T > const &c, xyzTriple< T > const &d, xyzTriple< T > &m) |
Center of 4 xyzTriples: Return via argument (slightly faster) More... | |
template<typename T > | |
T | angle_of (xyzTriple< T > const &a, xyzTriple< T > const &b) |
Angle between two vectors (in radians on [ 0, pi ]) More... | |
template<typename T > | |
T | angle_of (xyzTriple< T > const &a, xyzTriple< T > const &b, xyzTriple< T > const &c) |
Angle formed by three consecutive points (in radians on [ 0, pi ]) More... | |
template<typename T > | |
T | cos_of (xyzTriple< T > const &a, xyzTriple< T > const &b) |
Cosine of angle between two vectors. More... | |
template<typename T > | |
T | cos_of (xyzTriple< T > const &a, xyzTriple< T > const &b, xyzTriple< T > const &c) |
Cosine of angle formed by three consecutive points. More... | |
template<typename T > | |
T | sin_of (xyzTriple< T > const &a, xyzTriple< T > const &b) |
Sine of angle between two vectors. More... | |
template<typename T > | |
T | sin_of (xyzTriple< T > const &a, xyzTriple< T > const &b, xyzTriple< T > const &c) |
Sine of angle formed by three consecutive points. More... | |
template<typename T > | |
bool | operator== (xyzTriple< T > const &a, xyzTriple< T > const &b) |
xyzTriple == xyzTriple More... | |
template<typename T > | |
bool | operator!= (xyzTriple< T > const &a, xyzTriple< T > const &b) |
xyzTriple != xyzTriple More... | |
template<typename T > | |
bool | operator< (xyzTriple< T > const &a, xyzTriple< T > const &b) |
xyzTriple < xyzTriple More... | |
template<typename T > | |
bool | operator<= (xyzTriple< T > const &a, xyzTriple< T > const &b) |
xyzTriple <= xyzTriple More... | |
template<typename T > | |
bool | operator>= (xyzTriple< T > const &a, xyzTriple< T > const &b) |
xyzTriple >= xyzTriple More... | |
template<typename T > | |
bool | operator> (xyzTriple< T > const &a, xyzTriple< T > const &b) |
xyzTriple > xyzTriple More... | |
template<typename T > | |
bool | operator== (xyzTriple< T > const &v, T const &t) |
xyzTriple == T More... | |
template<typename T > | |
bool | operator!= (xyzTriple< T > const &v, T const &t) |
xyzTriple != T More... | |
template<typename T > | |
bool | operator< (xyzTriple< T > const &v, T const &t) |
xyzTriple < T More... | |
template<typename T > | |
bool | operator<= (xyzTriple< T > const &v, T const &t) |
xyzTriple <= T More... | |
template<typename T > | |
bool | operator>= (xyzTriple< T > const &v, T const &t) |
xyzTriple >= T More... | |
template<typename T > | |
bool | operator> (xyzTriple< T > const &v, T const &t) |
xyzTriple > T More... | |
template<typename T > | |
bool | operator== (T const &t, xyzTriple< T > const &v) |
T == xyzTriple. More... | |
template<typename T > | |
bool | operator!= (T const &t, xyzTriple< T > const &v) |
T != xyzTriple. More... | |
template<typename T > | |
bool | operator< (T const &t, xyzTriple< T > const &v) |
T < xyzTriple. More... | |
template<typename T > | |
bool | operator<= (T const &t, xyzTriple< T > const &v) |
T <= xyzTriple. More... | |
template<typename T > | |
bool | operator>= (T const &t, xyzTriple< T > const &v) |
T >= xyzTriple. More... | |
template<typename T > | |
bool | operator> (T const &t, xyzTriple< T > const &v) |
T > xyzTriple. More... | |
template<typename T > | |
bool | equal_length (xyzTriple< T > const &a, xyzTriple< T > const &b) |
Equal length? More... | |
template<typename T > | |
bool | not_equal_length (xyzTriple< T > const &a, xyzTriple< T > const &b) |
Not equal length? More... | |
template<typename U > | |
U | dot (xyzTriple< U > const &a, xyzTriple< U > const &b) |
Dot product. More... | |
template<typename U > | |
U | dot_product (xyzTriple< U > const &a, xyzTriple< U > const &b) |
Dot product. More... | |
template<typename U > | |
U | inner_product (xyzTriple< U > const &a, xyzTriple< U > const &b) |
Inner product ( == dot product ) More... | |
template<typename U > | |
bool | equal_length (xyzTriple< U > const &a, xyzTriple< U > const &b) |
Equal length? More... | |
template<typename U > | |
xyzTriple< U > | cross (xyzTriple< U > const &a, xyzTriple< U > const &b) |
Cross product. More... | |
template<typename U > | |
xyzTriple< U > | cross_product (xyzTriple< U > const &a, xyzTriple< U > const &b) |
Cross product. More... | |
template<typename U > | |
void | cross (xyzTriple< U > const &a, xyzTriple< U > const &b, xyzTriple< U > &c) |
Cross product: Return via argument (slightly faster) More... | |
template<typename U > | |
void | cross_product (xyzTriple< U > const &a, xyzTriple< U > const &b, xyzTriple< U > &c) |
Cross product: Return via argument (slightly faster) More... | |
template<typename U > | |
xyzTriple< U > | midpoint (xyzTriple< U > const &a, xyzTriple< U > const &b) |
Midpoint of 2 xyzTriples. More... | |
template<typename U > | |
void | midpoint (xyzTriple< U > const &a, xyzTriple< U > const &b, xyzTriple< U > &m) |
Midpoint of 2 xyzTriples: Return via argument (slightly faster) More... | |
template<typename U > | |
xyzTriple< U > | center (xyzTriple< U > const &a, xyzTriple< U > const &b) |
Center of 2 xyzTriples. More... | |
template<typename U > | |
void | center (xyzTriple< U > const &a, xyzTriple< U > const &b, xyzTriple< U > &m) |
Center of 2 xyzTriples: Return via argument (slightly faster) More... | |
template<typename U > | |
xyzTriple< U > | center (xyzTriple< U > const &a, xyzTriple< U > const &b, xyzTriple< U > const &c) |
Center of 3 xyzTriples. More... | |
template<typename U > | |
void | center (xyzTriple< U > const &a, xyzTriple< U > const &b, xyzTriple< U > const &c, xyzTriple< U > &m) |
Center of 3 xyzTriples: Return via argument (slightly faster) More... | |
template<typename U > | |
xyzTriple< U > | center (xyzTriple< U > const &a, xyzTriple< U > const &b, xyzTriple< U > const &c, xyzTriple< U > const &d) |
Center of 4 xyzTriples. More... | |
template<typename U > | |
void | center (xyzTriple< U > const &a, xyzTriple< U > const &b, xyzTriple< U > const &c, xyzTriple< U > const &d, xyzTriple< U > &m) |
Center of 4 xyzTriples: Return via argument (slightly faster) More... | |
template<typename U > | |
U | angle_of (xyzTriple< U > const &a, xyzTriple< U > const &b) |
Angle between two vectors (in radians on [ 0, pi ]) More... | |
template<typename U > | |
U | angle_of (xyzTriple< U > const &a, xyzTriple< U > const &b, xyzTriple< U > const &c) |
Angle formed by three consecutive points (in radians on [ 0, pi ]) More... | |
template<typename U > | |
U | cos_of (xyzTriple< U > const &a, xyzTriple< U > const &b) |
Cosine of angle between two vectors. More... | |
template<typename U > | |
U | cos_of (xyzTriple< U > const &a, xyzTriple< U > const &b, xyzTriple< U > const &c) |
Cosine of angle formed by three consecutive points. More... | |
template<typename U > | |
U | sin_of (xyzTriple< U > const &a, xyzTriple< U > const &b) |
Sine of angle between two vectors. More... | |
template<typename U > | |
U | sin_of (xyzTriple< U > const &a, xyzTriple< U > const &b, xyzTriple< U > const &c) |
Sine of angle formed by three consecutive points. More... | |
template<typename U > | |
U | distance_squared (xyzTriple< U > const &a, xyzTriple< U > const &b) |
Distance squared. More... | |
template<typename U > | |
bool | not_equal_length (xyzTriple< U > const &a, xyzTriple< U > const &b) |
Not equal length? More... | |
template<typename U > | |
void | add (xyzTriple< U > const &a, xyzTriple< U > const &b, xyzTriple< U > &r) |
Add: xyzTriple + xyzTriple. More... | |
template<typename U > | |
void | add (xyzTriple< U > const &v, U const &t, xyzTriple< U > &r) |
Add: xyzTriple + Value. More... | |
template<typename U > | |
void | add (U const &t, xyzTriple< U > const &v, xyzTriple< U > &r) |
Add: Value + xyzTriple. More... | |
template<typename U > | |
void | subtract (xyzTriple< U > const &a, xyzTriple< U > const &b, xyzTriple< U > &r) |
Subtract: xyzTriple - xyzTriple. More... | |
template<typename U > | |
void | subtract (xyzTriple< U > const &v, U const &t, xyzTriple< U > &r) |
Subtract: xyzTriple - Value. More... | |
template<typename U > | |
void | subtract (U const &t, xyzTriple< U > const &v, xyzTriple< U > &r) |
Subtract: Value - xyzTriple. More... | |
template<typename U > | |
void | multiply (xyzTriple< U > const &v, U const &t, xyzTriple< U > &r) |
Multiply: xyzTriple * Value. More... | |
template<typename U > | |
void | multiply (U const &t, xyzTriple< U > const &v, xyzTriple< U > &r) |
Multiply: Value * xyzTriple. More... | |
template<typename U > | |
void | divide (xyzTriple< U > const &v, U const &t, xyzTriple< U > &r) |
Divide: xyzTriple / Value. More... | |
template<typename U > | |
xyzTriple< U > | min (xyzTriple< U > const &a, xyzTriple< U > const &b) |
xyzTriple with min coordinates of two xyzTriples More... | |
template<typename U > | |
xyzTriple< U > | max (xyzTriple< U > const &a, xyzTriple< U > const &b) |
xyzTriple with max coordinates of two xyzTriples More... | |
template<typename U > | |
U | distance (xyzTriple< U > const &a, xyzTriple< U > const &b) |
Distance. More... | |
template<typename T > | |
std::ostream & | operator<< (std::ostream &stream, xyzTriple< T > const &v) |
stream << xyzTriple output operator More... | |
template<typename T > | |
std::istream & | operator>> (std::istream &stream, xyzTriple< T > &v) |
stream >> xyzTriple input operator More... | |
template<typename T > | |
xyzVector< T > | operator+ (xyzVector< T > const &a, xyzVector< T > const &b) |
xyzVector + xyzVector More... | |
template<typename T > | |
xyzVector< T > | operator+ (xyzVector< T > const &v, T const &t) |
xyzVector + T More... | |
template<typename T > | |
xyzVector< T > | operator+ (T const &t, xyzVector< T > const &v) |
T + xyzVector. More... | |
template<typename T > | |
xyzVector< T > | operator- (xyzVector< T > const &a, xyzVector< T > const &b) |
xyzVector - xyzVector More... | |
template<typename T > | |
xyzVector< T > | operator- (xyzVector< T > const &v, T const &t) |
xyzVector - T More... | |
template<typename T > | |
xyzVector< T > | operator- (T const &t, xyzVector< T > const &v) |
T - xyzVector. More... | |
template<typename T > | |
xyzVector< T > | operator* (xyzVector< T > const &v, T const &t) |
xyzVector * T More... | |
template<typename T > | |
xyzVector< T > | operator* (T const &t, xyzVector< T > const &v) |
T * xyzVector. More... | |
template<typename T > | |
xyzVector< T > | operator/ (xyzVector< T > const &v, T const &t) |
xyzVector / T More... | |
template<typename T > | |
void | add (xyzVector< T > const &a, xyzVector< T > const &b, xyzVector< T > &r) |
Add: xyzVector + xyzVector. More... | |
template<typename T > | |
void | add (xyzVector< T > const &v, T const &t, xyzVector< T > &r) |
Add: xyzVector + T. More... | |
template<typename T > | |
void | add (T const &t, xyzVector< T > const &v, xyzVector< T > &r) |
Add: T + xyzVector. More... | |
template<typename T > | |
void | subtract (xyzVector< T > const &a, xyzVector< T > const &b, xyzVector< T > &r) |
Subtract: xyzVector - xyzVector. More... | |
template<typename T > | |
void | subtract (xyzVector< T > const &v, T const &t, xyzVector< T > &r) |
Subtract: xyzVector - T. More... | |
template<typename T > | |
void | subtract (T const &t, xyzVector< T > const &v, xyzVector< T > &r) |
Subtract: T - xyzVector. More... | |
template<typename T > | |
void | multiply (xyzVector< T > const &v, T const &t, xyzVector< T > &r) |
Multiply: xyzVector * T. More... | |
template<typename T > | |
void | multiply (T const &t, xyzVector< T > const &v, xyzVector< T > &r) |
Multiply: T * xyzVector. More... | |
template<typename T > | |
void | divide (xyzVector< T > const &v, T const &t, xyzVector< T > &r) |
Divide: xyzVector / T. More... | |
template<typename T > | |
xyzVector< T > | min (xyzVector< T > const &a, xyzVector< T > const &b) |
xyzVector with min coordinates of two xyzVectors More... | |
template<typename T > | |
xyzVector< T > | max (xyzVector< T > const &a, xyzVector< T > const &b) |
xyzVector with max coordinates of two xyzVectors More... | |
template<typename T > | |
T | dot (xyzVector< T > const &a, xyzVector< T > const &b) |
Distance. More... | |
template<typename T > | |
T | dot_product (xyzVector< T > const &a, xyzVector< T > const &b) |
Dot product. More... | |
template<typename T > | |
T | inner_product (xyzVector< T > const &a, xyzVector< T > const &b) |
Inner product ( == dot product ) More... | |
template<typename T > | |
xyzVector< T > | cross (xyzVector< T > const &a, xyzVector< T > const &b) |
Cross product. More... | |
template<typename T > | |
xyzVector< T > | cross_product (xyzVector< T > const &a, xyzVector< T > const &b) |
Cross product. More... | |
template<typename T > | |
void | cross (xyzVector< T > const &a, xyzVector< T > const &b, xyzVector< T > &c) |
Cross product: Return via argument (slightly faster) More... | |
template<typename T > | |
void | cross_product (xyzVector< T > const &a, xyzVector< T > const &b, xyzVector< T > &c) |
Cross product: Return via argument (slightly faster) More... | |
template<typename T > | |
xyzVector< T > | midpoint (xyzVector< T > const &a, xyzVector< T > const &b) |
Midpoint of 2 xyzVectors. More... | |
template<typename T > | |
void | midpoint (xyzVector< T > const &a, xyzVector< T > const &b, xyzVector< T > &m) |
Midpoint of 2 xyzVectors: Return via argument (slightly faster) More... | |
template<typename T > | |
xyzVector< T > | center (xyzVector< T > const &a, xyzVector< T > const &b) |
Center of 2 xyzVectors. More... | |
template<typename T > | |
void | center (xyzVector< T > const &a, xyzVector< T > const &b, xyzVector< T > &m) |
Center of 2 xyzVectors: Return via argument (slightly faster) More... | |
template<typename T > | |
xyzVector< T > | center (xyzVector< T > const &a, xyzVector< T > const &b, xyzVector< T > const &c) |
Center of 3 xyzVectors. More... | |
template<typename T > | |
void | center (xyzVector< T > const &a, xyzVector< T > const &b, xyzVector< T > const &c, xyzVector< T > &m) |
Center of 3 xyzVectors: Return via argument (slightly faster) More... | |
template<typename T > | |
xyzVector< T > | center (xyzVector< T > const &a, xyzVector< T > const &b, xyzVector< T > const &c, xyzVector< T > const &d) |
Center of 4 xyzVectors. More... | |
template<typename T > | |
void | center (xyzVector< T > const &a, xyzVector< T > const &b, xyzVector< T > const &c, xyzVector< T > const &d, xyzVector< T > &m) |
Center of 4 xyzVectors: Return via argument (slightly faster) More... | |
template<typename T > | |
bool | operator== (xyzVector< T > const &a, xyzVector< T > const &b) |
xyzVector == xyzVector More... | |
template<typename T > | |
bool | operator!= (xyzVector< T > const &a, xyzVector< T > const &b) |
xyzVector != xyzVector More... | |
template<typename T > | |
bool | operator< (xyzVector< T > const &a, xyzVector< T > const &b) |
xyzVector < xyzVector More... | |
template<typename T > | |
bool | operator<= (xyzVector< T > const &a, xyzVector< T > const &b) |
xyzVector <= xyzVector More... | |
template<typename T > | |
bool | operator>= (xyzVector< T > const &a, xyzVector< T > const &b) |
xyzVector >= xyzVector More... | |
template<typename T > | |
bool | operator> (xyzVector< T > const &a, xyzVector< T > const &b) |
xyzVector > xyzVector More... | |
template<typename T > | |
bool | operator== (xyzVector< T > const &v, T const &t) |
xyzVector == T More... | |
template<typename T > | |
bool | operator!= (xyzVector< T > const &v, T const &t) |
xyzVector != T More... | |
template<typename T > | |
bool | operator< (xyzVector< T > const &v, T const &t) |
xyzVector < T More... | |
template<typename T > | |
bool | operator<= (xyzVector< T > const &v, T const &t) |
xyzVector <= T More... | |
template<typename T > | |
bool | operator>= (xyzVector< T > const &v, T const &t) |
xyzVector >= T More... | |
template<typename T > | |
bool | operator> (xyzVector< T > const &v, T const &t) |
xyzVector > T More... | |
template<typename T > | |
bool | operator== (T const &t, xyzVector< T > const &v) |
T == xyzVector. More... | |
template<typename T > | |
bool | operator!= (T const &t, xyzVector< T > const &v) |
T != xyzVector. More... | |
template<typename T > | |
bool | operator< (T const &t, xyzVector< T > const &v) |
T < xyzVector. More... | |
template<typename T > | |
bool | operator<= (T const &t, xyzVector< T > const &v) |
T <= xyzVector. More... | |
template<typename T > | |
bool | operator>= (T const &t, xyzVector< T > const &v) |
T >= xyzVector. More... | |
template<typename T > | |
bool | operator> (T const &t, xyzVector< T > const &v) |
T > xyzVector. More... | |
template<typename T > | |
bool | equal_length (xyzVector< T > const &a, xyzVector< T > const &b) |
Equal length? More... | |
template<typename T > | |
bool | not_equal_length (xyzVector< T > const &a, xyzVector< T > const &b) |
Not equal length? More... | |
template<typename U > | |
void | subtract (xyzVector< U > const &a, xyzVector< U > const &b, xyzVector< U > &r) |
Subtract: xyzVector - xyzVector. More... | |
template<typename U > | |
void | subtract (xyzVector< U > const &v, U const &t, xyzVector< U > &r) |
Subtract: xyzVector - Value. More... | |
template<typename U > | |
void | subtract (U const &t, xyzVector< U > const &v, xyzVector< U > &r) |
Subtract: Value - xyzVector. More... | |
template<typename U > | |
void | multiply (xyzVector< U > const &v, U const &t, xyzVector< U > &r) |
Multiply: xyzVector * Value. More... | |
template<typename U > | |
void | multiply (U const &t, xyzVector< U > const &v, xyzVector< U > &r) |
Multiply: Value * xyzVector. More... | |
template<typename T > | |
xyzVector< T > | update_operation (xyzVector< T > const &a, xyzVector< T > const &b) |
template<typename T > | |
xyzVector< T > | update_5way_operation (xyzVector< T > const &a, xyzVector< T > const &b, xyzVector< T > const &c, xyzVector< T > const &d, xyzVector< T > const &e) |
template<typename U > | |
xyzVector< U > | min (xyzVector< U > const &a, xyzVector< U > const &b) |
xyzVector with min coordinates of two xyzVectors More... | |
template<typename U > | |
xyzVector< U > | max (xyzVector< U > const &a, xyzVector< U > const &b) |
xyzVector with max coordinates of two xyzVectors More... | |
template<typename U > | |
xyzVector< U > | cross (xyzVector< U > const &a, xyzVector< U > const &b) |
Cross product. More... | |
template<typename U > | |
xyzVector< U > | cross_product (xyzVector< U > const &a, xyzVector< U > const &b) |
Cross product. More... | |
template<typename U > | |
void | cross (xyzVector< U > const &a, xyzVector< U > const &b, xyzVector< U > &c) |
Cross product: Return via argument (slightly faster) More... | |
template<typename U > | |
void | cross_product (xyzVector< U > const &a, xyzVector< U > const &b, xyzVector< U > &c) |
Cross product: Return via argument (slightly faster) More... | |
template<typename U > | |
xyzVector< U > | midpoint (xyzVector< U > const &a, xyzVector< U > const &b) |
Midpoint of 2 xyzVectors. More... | |
template<typename U > | |
void | midpoint (xyzVector< U > const &a, xyzVector< U > const &b, xyzVector< U > &m) |
Midpoint of 2 xyzVectors: Return via argument (slightly faster) More... | |
template<typename U > | |
xyzVector< U > | center (xyzVector< U > const &a, xyzVector< U > const &b) |
Center of 2 xyzVectors. More... | |
template<typename U > | |
void | center (xyzVector< U > const &a, xyzVector< U > const &b, xyzVector< U > &m) |
Center of 2 xyzVectors: Return via argument (slightly faster) More... | |
template<typename U > | |
xyzVector< U > | center (xyzVector< U > const &a, xyzVector< U > const &b, xyzVector< U > const &c) |
Center of 3 xyzVectors. More... | |
template<typename U > | |
void | center (xyzVector< U > const &a, xyzVector< U > const &b, xyzVector< U > const &c, xyzVector< U > &m) |
Center of 3 xyzVectors: Return via argument (slightly faster) More... | |
template<typename U > | |
xyzVector< U > | center (xyzVector< U > const &a, xyzVector< U > const &b, xyzVector< U > const &c, xyzVector< U > const &d) |
Center of 4 xyzVectors. More... | |
template<typename U > | |
void | center (xyzVector< U > const &a, xyzVector< U > const &b, xyzVector< U > const &c, xyzVector< U > const &d, xyzVector< U > &m) |
Center of 4 xyzVectors: Return via argument (slightly faster) More... | |
template<typename U > | |
void | add (xyzVector< U > const &a, xyzVector< U > const &b, xyzVector< U > &r) |
Add: xyzVector + xyzVector. More... | |
template<typename U > | |
void | add (xyzVector< U > const &v, U const &t, xyzVector< U > &r) |
Add: xyzVector + Value. More... | |
template<typename U > | |
void | add (U const &t, xyzVector< U > const &v, xyzVector< U > &r) |
Add: Value + xyzVector. More... | |
template<typename U > | |
bool | equal_length (xyzVector< U > const &a, xyzVector< U > const &b) |
Equal length? More... | |
template<typename U > | |
bool | not_equal_length (xyzVector< U > const &a, xyzVector< U > const &b) |
Not equal length? More... | |
template<typename U > | |
U | dot (xyzVector< U > const &a, xyzVector< U > const &b) |
Dot product. More... | |
template<typename U > | |
U | inner_product (xyzVector< U > const &a, xyzVector< U > const &b) |
Inner product ( == dot product ) More... | |
template<typename U > | |
void | divide (xyzVector< U > const &v, U const &t, xyzVector< U > &r) |
Divide: xyzVector / Value. More... | |
template<typename T > | |
std::ostream & | operator<< (std::ostream &stream, xyzVector< T > const &v) |
stream << xyzVector output operator More... | |
template<typename T > | |
std::istream & | operator>> (std::istream &stream, xyzVector< T > &v) |
stream >> xyzVector input operator More... | |
template<typename T > | |
std::string | truncate_and_serialize_xyz_vector (xyzVector< T > vector, Real precision) |
void | calc_zscore (std::map< Size, Real > const &input_v, std::map< Size, Real > &zscore_v, bool negating=false) |
Calculate a Z-score from a set of data. Real i_zscore = (input_v[i]-mean)/stdev;. More... | |
Unit headers.
A collection of functions for working with probabilities.
Vector0's that can perform mathmatical functions.
Generic base class for the MathNTensor class. Since the MathNTensor class takes a type AND a dimensionality as template arguments, it's not possible to have a generic pointer to a MathNTensor of arbitrary dimensionality. The base class allows this.
File input/output for the MathNTensor class.
construction/destructor of 3-D Matrix's with some functions
Mathmatical functions for the MathMatrix class.
construction/destructor of Matrix's with some functions
Tricubic spline for smoothly interpolating a function in 3 dimensions.
Forward declaration for the SplineGenerator.
Base class for abstract N-dimensional PolycubicSpline.
Polycubic spline for smoothly interpolating a function in n dimensions.
Forward declarations of Interpolator.
Cubic spline for all your evil desires.
Forward declarations for the cubic spline class.
Bicubic spline for all your hearts' desires.
Forward declarations for the bicubic spline class.
read the header file!
A 2D histogram based upon a map structure.
A 1D histogram based upon a map structure.
Return the 2d area of a projection, need x and y (or z) coordinates as well as their respective element radius and probe radius, probe radius can be set to zero if only the projection of protein in vaccum is desired.
Boost headers.
Utility headers.
Core headers Utility headers C++ headers
Numeric headers Utility headers C++ headers
C++ headers
Very simple class for histograms based upon maps. You provide the key, which is templated, meaning that the key can be a string, real, size, enum. It will return a count, if you want it
Very simple class for histograms based upon maps. You provide the key, which is templated, meaning that the two keys can be strings, reals, sizes. It will return a count, if you want it
Also called Keys spline or polycubic 'convolution'. See: https://en.wikipedia.org/wiki/Bicubic_interpolation
Unlike prior Rosetta spline interpolation (see interpolation::polycubic_interpolation or B-spline implementation in core::scoring::electron_density::SplineInterp), this does not require pre-training of spline which can be both time-intensive & memory intensive. Instead, uses an interpolant based on nearest neighbor grid points (like polylinear interpolation) and next-nearest neighbor.
First derivative is continuous (but second deriv is not, in general).
If we need more accuracy & smoothness, there is a higher-order cubic spline that looks out one more neighbor (see Keys, "Cubic convolution interpolation for digital image processing", IEEE Transactions on Acoustics, Speech, and Signal Processing 1981).
If we need more speed, following is pretty inefficient to ensure generality (see notes). Also, there is apparently a faster version called osculatory interpolation that predated Keys & Catmull & Rom by 80 years; see Meijering & Unser, "A Note on Cubic Convolution Interpolation", IEEE Transactions on Image Processing 2003.
This is an implementation of an algorithm from Numerical Recipes. It relies heavily on the implementation of the cubic spline (from Numerical Recipes), the MathMatrix, and the MathVector. You MUST USE the MathVector and MathMatrix implementations to use this function. The spline is very customizable and allows you to define the border behaviors (start/end of spline values). If you use the e_Natural (enum) BorderFlag, the start/end (border) of the spline will be linear. This may not be ideal for scoring functions as you want the a smoothing effect at the start/end (border) values. Instead, you probably want to use the e_FirstDeriv (enum) BorderFlag with the first derivate (private member value firstbe_) set to 0. This will cause a smoothing out of the start/end (border) of spline. If you want the splie to be continuous, you should use the e_Periodic (enum) BorderFlag.
To "train" the spline, use must provide the spline with a MathMatrix (numeric::MathMatrix). Lets look at an example. x values y 1__2__ 3 .1 | 1 2 3 | v .3 | 4 5 6 | a .5 | 7 8 9 | l |__________| u e s
Given the above Matrix (MathMatrix) You would want your start (START[2] private member value start_) values to be START[] = {1,.1}. You would then want to assign the delta (DELTA[2], private member value delta_) values to DELTA[] = {1,.2}. These delta values is the change between your x values and your y values. For example, the change between x1 and x2 is 1. Therefore, the delta for the x-values will be 1. For y values, you have y.1, y.3 which is a change of .2, therefore the delta will be .2. You do not have to specify an end because the algorithm will stop when it reaches the last value in the matrix.
Finally, the LinCont determins that if the argument x or y is outside the range decide if the spline should be continued linearly.
The below comments are for the Bicubic spline but apply for the cubic spline. This is an implementation of an algorithm from Numerical Recipes. It relies heavily on the implementation of the cubic spline (from Numerical Recipes), the MathMatrix, and the MathVector. You MUST USE the MathVector and MathMatrix implementations to use this function. The spline is very customizable and allows you to define the border behaviors (start/end of spline values). If you use the e_Natural (enum) BorderFlag, the start/end (border) of the spline will be linear. This may not be ideal for scoring functions as you want the a smoothing effect at the start/end (border) values. Instead, you probably want to use the e_FirstDeriv (enum) BorderFlag with the first derivate (private member value firstbe_) set to 0. This will cause a smoothing out of the start/end (border) of spline. If you want the splie to be continuous, you should use the e_Periodic (enum) BorderFlag.
To "train" the spline, use must provide the spline with a MathMatrix (numeric::MathMatrix). Lets look at an example. x values y 1__2__ 3 .1 | 1 2 3 | v .3 | 4 5 6 | a .5 | 7 8 9 | l |__________| u e s
Given the above Matrix (MathMatrix) You would want your start (START[2] private member value start_) values to be START[] = {1,.1}. You would then want to assign the delta (DELTA[2], private member value delta_) values to DELTA[] = {1,.2}. These delta values is the change between your x values and your y values. For example, the change between x1 and x2 is 1. Therefore, the delta for the x-values will be 1. For y values, you have y.1, y.3 which is a change of .2, therefore the delta will be .2. You do not have to specify an end because the algorithm will stop when it reaches the last value in the matrix.
Finally, the LinCont determins that if the argument x or y is outside the range decide if the spline should be continued linearly.
This is an implementation of an algorithm that was taken from BCL (Jens Meiler) The Matrix is constructed out of arrays and places values into rows/columns based on however many columns/rows you specify. Actual operations of the MathMatrix are implemented in numeric/MathMatrix_operations.hh. To access specific values (elements), you must use the operator (). For example: to access row 5, column 3 of a matrix, you would use matrix(5,3). *****NOTE**** The MathMatrix class is indexed at 0!!!!
This is an implementation of an algorithm that was taken from BCL (Jens Meiler) The Matrix is construction is found in numeric/MathMatrix.hh. These are mathematical functions that can be used by the MathMatrix class. ***Note that these are outside of class, but having the operators take two arguments ensures that no one will use the functions unknowningly
This is an implementation of an algorithm that was taken from BCL (Jens Meiler) *****NOTE**** The MathNTensor class is indexed at 0!
Check out MathNTensor_io.hh for file i/o functions.
To avoid cryptic 'hardwiring' of binary file specification into the code, look for details of # bins as n_bins entry in JSON file.
File should be of the form '.bin.gz', with associated '.json' ASCII file.
This is an implementation of an algorithm that was taken from BCL (Jens Meiler) *****NOTE**** The MathTensor class is indexed at 0!!!!
This is an implementation of an algorithm that was taken from BCL (Jens Meiler) The MathVector is constructed just like utility::vector0, however this class does not inherit from utility::vector0. It is implemented this way to avoid confusion. Most functions from the std::vector / utility::vector0 ARE NOT included. This is a vector that performs mathematical functions, not a "storage" vector. Actual mathematical functions found in numeric/MathVector_operations. To access specific values you must use the operator (). For example: vector(5), will give you the value at index 5. This is done to distinguish from utility::vector!
This is an implementation of an algorithm that was taken from BCL (Jens Meiler) The Matrix is construction is found in numeric/MathVector.hh. These are mathematical functions that can be used by the MathVector class. ***Note that these are outside of class, but having the operators take two arguments ensures that no one will use the functions unknowningly
Currently supported RG types: standard - build in C++ random generator ran3 - old generator from previos version of rosetta
typedef utility::pointer::shared_ptr< AxisRotationSampler const > numeric::AxisRotationSamplerCOP |
typedef utility::pointer::shared_ptr< AxisRotationSampler > numeric::AxisRotationSamplerOP |
typedef BodyPosition< double > numeric::BodyPosition_double |
typedef BodyPosition< float > numeric::BodyPosition_float |
typedef BodyPosition< long double > numeric::BodyPosition_longdouble |
typedef utility::pointer::shared_ptr<Calculator> numeric::CalculatorOP |
typedef utility::pointer::weak_ptr<ClusteringTreeNode> numeric::ClusteringTreeNodeAP |
typedef utility::pointer::shared_ptr<ClusteringTreeNode> numeric::ClusteringTreeNodeOP |
using numeric::Length = typedef Real |
using numeric::MathNTensorBaseCOP = typedef utility::pointer::shared_ptr< MathNTensorBase< T > const > |
using numeric::MathNTensorBaseOP = typedef utility::pointer::shared_ptr< MathNTensorBase< T > > |
using numeric::MathNTensorCOP = typedef utility::pointer::shared_ptr< MathNTensor< T,N > const > |
using numeric::MathNTensorOP = typedef utility::pointer::shared_ptr< MathNTensor< T,N > > |
typedef utility::pointer::shared_ptr< Polynomial_1d const > numeric::Polynomial_1dCOP |
typedef utility::pointer::shared_ptr< Polynomial_1d > numeric::Polynomial_1dOP |
typedef Quaternion< double > numeric::Quaternion_double |
typedef Quaternion< float > numeric::Quaternion_float |
typedef Quaternion< long double > numeric::Quaternion_longdouble |
using numeric::Real = typedef platform::Real |
typedef utility::pointer::shared_ptr<RocCurve> numeric::RocCurveOP |
typedef utility::pointer::shared_ptr<RocPoint> numeric::RocPointOP |
typedef platform::Size numeric::Size |
typedef platform::SSize numeric::SSize |
typedef utility::pointer::shared_ptr< UniformRotationSampler const > numeric::UniformRotationSamplerCOP |
typedef utility::pointer::shared_ptr< UniformRotationSampler > numeric::UniformRotationSamplerOP |
using numeric::Vector = typedef xyzVector<Real> |
typedef xyzTransform< double > numeric::Xform |
typedef xyzTransform< float > numeric::Xformf |
typedef xyzMatrix< bool > numeric::xyzMatrix_bool |
typedef xyzMatrix< char > numeric::xyzMatrix_char |
typedef xyzMatrix< double > numeric::xyzMatrix_double |
typedef xyzMatrix< float > numeric::xyzMatrix_float |
typedef xyzMatrix< int > numeric::xyzMatrix_int |
typedef xyzMatrix< long int > numeric::xyzMatrix_long |
typedef xyzMatrix< long double > numeric::xyzMatrix_long_double |
typedef xyzMatrix< platform::Real > numeric::xyzMatrix_real |
typedef xyzMatrix< signed char > numeric::xyzMatrix_schar |
typedef xyzMatrix< short int > numeric::xyzMatrix_short |
typedef xyzMatrix< platform::Size > numeric::xyzMatrix_Size |
typedef xyzMatrix< platform::Size > numeric::xyzMatrix_size |
typedef xyzMatrix< platform::Size > numeric::xyzMatrix_size_t |
typedef xyzMatrix< unsigned char > numeric::xyzMatrix_uchar |
typedef xyzMatrix< unsigned int > numeric::xyzMatrix_uint |
typedef xyzMatrix< unsigned long int > numeric::xyzMatrix_ulong |
typedef xyzMatrix< unsigned short int > numeric::xyzMatrix_ushort |
typedef xyzTransform< double > numeric::xyzTransform_double |
typedef xyzTransform< float > numeric::xyzTransform_float |
typedef xyzTransform< numeric::Real > numeric::xyzTransform_Real |
typedef xyzTriple< bool > numeric::xyzTriple_bool |
typedef xyzTriple< char > numeric::xyzTriple_char |
typedef xyzTriple< double > numeric::xyzTriple_double |
typedef xyzTriple< float > numeric::xyzTriple_float |
typedef xyzTriple< int > numeric::xyzTriple_int |
typedef xyzTriple< long int > numeric::xyzTriple_long |
typedef xyzTriple< long double > numeric::xyzTriple_longdouble |
typedef xyzTriple< signed char > numeric::xyzTriple_schar |
typedef xyzTriple< short int > numeric::xyzTriple_short |
typedef xyzTriple< std::size_t > numeric::xyzTriple_size |
typedef xyzTriple< std::size_t > numeric::xyzTriple_size_t |
typedef xyzTriple< unsigned char > numeric::xyzTriple_uchar |
typedef xyzTriple< unsigned int > numeric::xyzTriple_uint |
typedef xyzTriple< unsigned long int > numeric::xyzTriple_ulong |
typedef xyzTriple< unsigned short int > numeric::xyzTriple_ushort |
typedef xyzVector< bool > numeric::xyzVector_bool |
typedef xyzVector< char > numeric::xyzVector_char |
typedef xyzVector< double > numeric::xyzVector_double |
typedef xyzVector< float > numeric::xyzVector_float |
typedef xyzVector< int > numeric::xyzVector_int |
typedef xyzVector< long int > numeric::xyzVector_long |
typedef xyzVector< long double > numeric::xyzVector_long_double |
typedef xyzVector< Real > numeric::xyzVector_real |
typedef xyzVector< signed char > numeric::xyzVector_schar |
typedef xyzVector< short int > numeric::xyzVector_short |
typedef xyzVector< std::size_t > numeric::xyzVector_size |
typedef xyzVector< std::size_t > numeric::xyzVector_size_t |
typedef xyzVector< unsigned char > numeric::xyzVector_uchar |
typedef xyzVector< unsigned int > numeric::xyzVector_uint |
typedef xyzVector< unsigned long int > numeric::xyzVector_ulong |
typedef xyzVector< unsigned short int > numeric::xyzVector_ushort |
enum numeric::RocStatus |
Absolute difference.
References a, compute_difference::b, max(), and min().
Real & numeric::access_Real_MathNTensor | ( | MathNTensorBaseOP< Real > | tensorbase, |
utility::vector1< Size > const & | position | ||
) |
Utility function to access an entry in a MathNTensor of arbitrary dimensionality unknown at compile time, given a MathNTensorBaseOP.
References enumerate_junctions::default, utility::pointer::dynamic_pointer_cast(), create_a3b_hbs::i, runtime_assert, runtime_assert_string_msg, and utility_exit_with_message.
|
inline |
Add: Value + xyzTriple.
|
inline |
Add: Value + xyzVector.
void numeric::add | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b, | ||
xyzTriple< T > & | r | ||
) |
Referenced by utility::json_spirit::Semantic_actions< Value_type, Iter_type >::add_to_current(), mutant_modeler.MutantModeler::get_high_res_command_lines(), insert_stage_tag(), job_manager.StatusWindow::refresh(), utility::split(), utility::split_to_list(), utility::split_to_set(), and pyrosetta.tests.bindings.core.test_pose.TestPoseResidueLabelAccessor::test_labels().
|
inline |
Add: xyzTriple + Value.
|
inline |
Add: xyzVector + Value.
|
inline |
Helper function to find the rotation to optimally transform the vectors A1-B1 to vectors A2-B2.
References numeric::xyzMatrix< T >::identity(), inverse(), numeric::xyzVector< T >::is_zero(), numeric::xyzVector< T >::normalize(), docking::R, predPRE::R2, numeric::xyzMatrix< T >::xx(), numeric::xyzMatrix< T >::xy(), numeric::xyzMatrix< T >::xz(), numeric::xyzMatrix< T >::yx(), numeric::xyzMatrix< T >::yy(), numeric::xyzMatrix< T >::yz(), numeric::xyzMatrix< T >::zx(), numeric::xyzMatrix< T >::zy(), and numeric::xyzMatrix< T >::zz().
Referenced by getxform(), ik_arg_asp_frnt(), ik_arg_asp_side(), ik_arg_glu_frnt(), ik_arg_glu_side(), ik_his_clamp(), main(), and run().
|
inline |
Plane angle in degrees: angle value returned.
References basic::options::OptionKeys::hotspot::angle, angle_radians(), numeric::conversions::degrees(), and p2.
Referenced by angle_degrees_double(), DetectSymmetry::apply(), SwapElementsMover2::apply(), find_neighbors_directional(), get_interface_residues(), CrystDesign::get_interface_residues(), get_neighbor_residues(), CrystDesign::get_neighbor_residues(), ik_arg_asp_frnt(), ik_arg_asp_side(), ik_arg_glu_frnt(), ik_arg_glu_side(), main(), and run().
|
inline |
Angle between two vectors in radians.
References basic::options::OptionKeys::hotspot::angle, angle_radians(), numeric::conversions::degrees(), and p2.
|
inline |
References angle_degrees(), and p2.
|
inline |
References angle_degrees(), and p2.
Angle between two vectors (in radians on [ 0, pi ])
T numeric::angle_of | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b, | ||
xyzTriple< T > const & | c | ||
) |
Angle formed by three consecutive points (in radians on [ 0, pi ])
|
inline |
Angle between two vectors (in radians on [ 0, pi ])
|
inline |
Angle formed by three consecutive points (in radians on [ 0, pi ])
|
inline |
Angle between two vectors (in radians on [ 0, pi ])
References a, compute_difference::b, sin_cos_range(), and docking::U.
Referenced by BuriedUnsatPolarsFinder::acc_geom_check(), angle_of(), ZincMatchFilter::apply(), BuriedUnsatPolarsFinder::don_geom_check(), enclosing_angles(), zinc2_homodimer_setup::filter_metal_geom(), HbondZinc::hbond_constraint(), initialize_from_pdb(), main(), mg_hires_pdbstats_from_pose(), mg_pdbstats_from_pose(), search_other_atoms(), zinc1_homodimer_design::setup_rollmoving(), and apps::public1::scenarios::chemically_conjugated_docking::ubq_ras_rotation_angle().
|
inline |
Angle formed by three consecutive points (in radians on [ 0, pi ])
References a, angle_of(), compute_difference::b, and kmeans_adaptive_kernel_density_bb_dependent_rotlib::c.
|
inline |
Plane angle in radians: angle value returned.
References basic::options::OptionKeys::hotspot::angle, angle_radians(), and p2.
|
inline |
Plane angle in radians: angle value passed.
References a, basic::options::OptionKeys::hotspot::angle, compute_difference::b, dot(), p2, and sin_cos_range().
Referenced by pseudoTrace::add_to_C(), pseudoTrace::add_to_N(), angle_degrees(), angle_degrees(), angle_radians(), angle_radians_double(), ch_o_pdbstats_from_pose(), PoseWrap::check_scattach_res(), files_for_openMM_test(), Arch::intra_slidedis_to_component_disp(), main(), my_main(), output_angles(), output_sugar_geometry_parameters(), pdb_stats(), peptide_plane_test(), BruteFunGroupTK::place_c(), TCDock::precompute_intra(), DisulfideBondEnergy::probability(), run(), write_AHD_to_db(), and write_BAH_to_db().
|
inline |
Angle between two vectors in radians.
References a, basic::options::OptionKeys::hotspot::angle, compute_difference::b, dot(), p2, and sin_cos_range().
|
inline |
References angle_radians(), and p2.
|
inline |
References angle_radians(), and p2.
References a, oop_conformations::angles, compute_difference::b, kmeans_adaptive_kernel_density_bb_dependent_rotlib::c, modulo(), and pyrosetta.distributed.cluster.exceptions::T.
Referenced by euler_angles_from_rotation_matrix_ZXZ(), euler_angles_from_rotation_matrix_ZYX(), and euler_angles_from_rotation_matrix_ZYZ().
like std::acos but with range checking
References sin_cos_range(), and x.
Referenced by numeric::deriv::angle_p1_deriv(), numeric::deriv::angle_p1_p2_p3_deriv(), numeric::deriv::angle_p2_deriv(), numeric::deriv::dihedral_deriv_second(), get_angles(), dbscan_cluster_rotamer::get_common_int_coords(), kmeans_common::get_common_int_coords(), dbscan_cluster_rotamer::get_common_int_coords_2(), kmeans_common::get_common_int_coords_2(), hbond_stats(), and dbscan_cluster_rotamer::main_old_kmeans().
|
inline |
Calculates the acceptance probability of a given score-change at the given temperature, generally used in simulated annealing algorithms. Returns a value in the range (0-1).
References max(), min(), and local::temperature.
void numeric::calc_zscore | ( | std::map< Size, Real > const & | input_v, |
std::map< Size, Real > & | zscore_v, | ||
bool | negating = false |
||
) |
Calculate a Z-score from a set of data. Real i_zscore = (input_v[i]-mean)/stdev;.
References mean(), create_a3b_hbs::nres, myspace::stdev(), and sum().
void numeric::ccd_angle | ( | utility::vector1< xyzVector< Real > > const & | F, |
utility::vector1< xyzVector< Real > > const & | M, | ||
xyzVector< Real > const & | axis_atom, | ||
xyzVector< Real > const & | theta_hat, | ||
Real & | alpha, | ||
Real & | S | ||
) |
<F> | the coordinates of the fixed target atoms |
<M> | the coordinates of the moving positions to be overlapped with the target atoms |
<theta_hat> | axis vector of the torsion angle |
<alpha> | empty angle to be calculated |
<S> | empty deviation to be calculated |
The objective of an individual cyclic coordinate descent (CCD) move is to minimize the deviation between a set of points that should perfectly superimpose. The deviation squared (S) can be expressed as:
S = Sum(r^2 + f^2) - 2 Sum[r(f_vector dot r_hat)] cos theta - 2 Sum[r(f_vector dot s_hat)] sin theta
The derivative of S with respect to theta (the angle about the rotation axis):
dS/dtheta = 2 Sum[r(f_vector dot r_hat)] sin theta - 2 Sum[r(f_vector dot s_hat)] cos theta
Setting dS/dtheta to zero gives the minimal value of theta, which we call alpha:
tan alpha = Sum[r(f_vector dot s_hat] / Sum[r(f_vector dot r_hat]
If we define... a = Sum(r^2 + f^2) b = 2 Sum[r(f_vector dot r_hat)] c = 2 Sum[r(f_vector dot s_hat)] then S can be rewritten: S = a - b cos alpha - c sin alpha and we can express alpha as tan alpha = c / b
References aa, ObjexxFCL::abs(), compute_difference::alpha, cross(), numeric::conversions::degrees(), dot(), test.T009_Exceptions::e, ObjexxFCL::format::F(), create_a3b_hbs::i, numeric::xyzVector< T >::is_unit(), numeric::xyzVector< T >::length(), min(), numeric::xyzVector< T >::normalized(), and O.
xyzTriple< T > numeric::center | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b | ||
) |
Center of 2 xyzTriples.
Referenced by numeric::geometry::hashing::SixDCoordinateBinner::bin_center_point(), numeric::geometry::hashing::SixDOffsetTree::lookup(), and numeric::geometry::hashing::SixDCoordinateBinner::radial_bin_index().
void numeric::center | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b, | ||
xyzTriple< T > & | m | ||
) |
Center of 2 xyzTriples: Return via argument (slightly faster)
xyzTriple< T > numeric::center | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b, | ||
xyzTriple< T > const & | c | ||
) |
Center of 3 xyzTriples.
void numeric::center | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b, | ||
xyzTriple< T > const & | c, | ||
xyzTriple< T > & | m | ||
) |
Center of 3 xyzTriples: Return via argument (slightly faster)
xyzTriple< T > numeric::center | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b, | ||
xyzTriple< T > const & | c, | ||
xyzTriple< T > const & | d | ||
) |
Center of 4 xyzTriples.
void numeric::center | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b, | ||
xyzTriple< T > const & | c, | ||
xyzTriple< T > const & | d, | ||
xyzTriple< T > & | m | ||
) |
Center of 4 xyzTriples: Return via argument (slightly faster)
|
inline |
Center of 2 xyzTriples.
|
inline |
Center of 2 xyzTriples: Return via argument (slightly faster)
|
inline |
Center of 3 xyzTriples.
|
inline |
Center of 3 xyzTriples: Return via argument (slightly faster)
|
inline |
Center of 4 xyzTriples.
|
inline |
Center of 4 xyzTriples: Return via argument (slightly faster)
xyzVector< T > numeric::center | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b | ||
) |
Center of 2 xyzVectors.
void numeric::center | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b, | ||
xyzVector< T > & | m | ||
) |
Center of 2 xyzVectors: Return via argument (slightly faster)
xyzVector< T > numeric::center | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b, | ||
xyzVector< T > const & | c | ||
) |
Center of 3 xyzVectors.
void numeric::center | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b, | ||
xyzVector< T > const & | c, | ||
xyzVector< T > & | m | ||
) |
Center of 3 xyzVectors: Return via argument (slightly faster)
xyzVector< T > numeric::center | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b, | ||
xyzVector< T > const & | c, | ||
xyzVector< T > const & | d | ||
) |
Center of 4 xyzVectors.
void numeric::center | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b, | ||
xyzVector< T > const & | c, | ||
xyzVector< T > const & | d, | ||
xyzVector< T > & | m | ||
) |
Center of 4 xyzVectors: Return via argument (slightly faster)
|
inline |
Center of 2 xyzVectors.
|
inline |
Center of 2 xyzVectors: Return via argument (slightly faster)
|
inline |
Center of 3 xyzVectors.
|
inline |
Center of 3 xyzVectors: Return via argument (slightly faster)
|
inline |
Center of 4 xyzVectors.
|
inline |
Center of 4 xyzVectors: Return via argument (slightly faster)
|
inline |
calculate center of mass for coordinates
Referenced by ligand_centroid(), numeric::geometry::residual_squared_of_points_to_plane(), and numeric::geometry::vector_normal_to_ring_plane_of_best_fit().
Number numeric::clamp | ( | Number | value, |
Number | lower_bound, | ||
Number | upper_bound | ||
) |
Clamps to the closed interval [lower_bound, upper_bound]. Templated type must implement operator<.
References value.
|
inline |
convert a string of comma separated values "0.2,0.4,0.3" to an xyzVector
References utility::from_string(), runtime_assert, split_string(), utility::string_split(), pyrosetta.distributed.cluster.exceptions::T, and basic::options::OptionKeys::in::file::xyz.
Real const & numeric::const_access_Real_MathNTensor | ( | MathNTensorBaseCOP< Real > | tensorbase, |
utility::vector1< Size > const & | position | ||
) |
Utility function to access an entry in a MathNTensor of arbitrary dimensionality unknown at compile time, given a MathNTensorBaseCOP.
Utility function to get const access to an entry in a MathNTensor of arbitrary dimensionality unknown at compile time, given a MathNTensorBaseCOP.
References enumerate_junctions::default, utility::pointer::dynamic_pointer_cast(), create_a3b_hbs::i, runtime_assert, runtime_assert_string_msg, and utility_exit_with_message.
Cosine of angle between two vectors.
T numeric::cos_of | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b, | ||
xyzTriple< T > const & | c | ||
) |
Cosine of angle formed by three consecutive points.
|
inline |
Cosine of angle between two vectors.
|
inline |
Cosine of angle formed by three consecutive points.
|
inline |
Cosine of angle between two vectors.
References a, compute_difference::b, sin_cos_range(), and docking::U.
|
inline |
Cosine of angle formed by three consecutive points.
References a, compute_difference::b, kmeans_adaptive_kernel_density_bb_dependent_rotlib::c, and cos_of().
Cotangent.
References pyrosetta.distributed.cluster.exceptions::T, and x.
xyzTriple< T > numeric::cross | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b | ||
) |
Cross product.
Referenced by numeric::deriv::angle_p2_deriv(), ccd_angle(), numeric::deriv::dihedral_p1_cosine_deriv_first(), numeric::deriv::dihedral_p2_cosine_deriv_first(), dihedral_radians(), numeric::xyzTransform< T >::from_four_points(), numeric::deriv::helper(), numeric::deriv::p1_theta_deriv(), and sicfast().
void numeric::cross | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b, | ||
xyzTriple< T > & | c | ||
) |
Cross product: Return via argument (slightly faster)
|
inline |
Cross product.
|
inline |
Cross product: Return via argument (slightly faster)
xyzVector< T > numeric::cross | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b | ||
) |
Cross product.
void numeric::cross | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b, | ||
xyzVector< T > & | c | ||
) |
Cross product: Return via argument (slightly faster)
|
inline |
Cross product.
|
inline |
Cross product: Return via argument (slightly faster)
xyzTriple< T > numeric::cross_product | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b | ||
) |
Cross product.
void numeric::cross_product | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b, | ||
xyzTriple< T > & | c | ||
) |
Cross product: Return via argument (slightly faster)
|
inline |
Cross product.
|
inline |
Cross product: Return via argument (slightly faster)
xyzVector< T > numeric::cross_product | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b | ||
) |
Cross product.
void numeric::cross_product | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b, | ||
xyzVector< T > & | c | ||
) |
Cross product: Return via argument (slightly faster)
|
inline |
Cross product.
|
inline |
Cross product: Return via argument (slightly faster)
Cosecant.
References pyrosetta.distributed.cluster.exceptions::T, and x.
Referenced by numeric::BodyPosition< T >::BodyPosition().
platform::Real numeric::cubic_polynomial_deriv | ( | platform::Real const | x, |
CubicPolynomial const & | cp | ||
) |
Evaluate derivative of cubic polynomial given x and polynomial coefficients.
References x.
CubicPolynomial numeric::cubic_polynomial_from_spline | ( | platform::Real | xlo, |
platform::Real | xhi, | ||
SplineParameters const & | sp | ||
) |
Compute cubic polynomial coefficients from a set of SplineParameters.
References a, compute_difference::b, kmeans_adaptive_kernel_density_bb_dependent_rotlib::c, basic::options::OptionKeys::cp::cp, test.T009_Exceptions::e, create_a3b_hbs::f, numeric::SplineParameters::y2hi, numeric::SplineParameters::y2lo, numeric::SplineParameters::yhi, and numeric::SplineParameters::ylo.
void numeric::cumulative | ( | RandomAccessIterator | first, |
RandomAccessIterator | last | ||
) |
Converts pdf to cdf.
References create_a3b_hbs::first, create_a3b_hbs::i, and normalize().
MathNTensorOP< T, N > numeric::deep_copy | ( | MathNTensor< T, N > const & | source | ) |
References numeric::MathNTensor< T, N >::clone().
template MathNTensorBaseOP< Real > numeric::deep_copy | ( | MathNTensorBase< Real > const & | ) |
Explicit template instantiation, apparently needed for PyRosetta.
MathNTensorBaseOP< T > numeric::deep_copy | ( | MathNTensorBase< T > const & | source | ) |
References numeric::MathNTensorBase< T >::clone().
|
inline |
References data, numeric::xyzVector< T >::x(), numeric::xyzVector< T >::y(), and numeric::xyzVector< T >::z().
T numeric::dihedral | ( | xyzVector< T > const & | p1, |
xyzVector< T > const & | p2, | ||
xyzVector< T > const & | p3, | ||
xyzVector< T > const & | p4 | ||
) |
Dihedral (torsion) angle in degrees: angle value returned.
References numeric::conversions::degrees(), dihedral_radians(), and p2.
void numeric::dihedral | ( | xyzVector< T > const & | p1, |
xyzVector< T > const & | p2, | ||
xyzVector< T > const & | p3, | ||
xyzVector< T > const & | p4, | ||
T & | angle | ||
) |
Dihedral (torsion) angle in degrees: angle value passed.
References basic::options::OptionKeys::hotspot::angle, dihedral_radians(), p2, and numeric::conversions::to_degrees().
Referenced by dihedral_double(), dock(), fix_alpha_for_pack_phosphate(), main(), and register_options().
T numeric::dihedral_degrees | ( | xyzVector< T > const & | p1, |
xyzVector< T > const & | p2, | ||
xyzVector< T > const & | p3, | ||
xyzVector< T > const & | p4 | ||
) |
Dihedral (torsion) angle in degrees: angle value returned.
References numeric::conversions::degrees(), dihedral_radians(), and p2.
void numeric::dihedral_degrees | ( | xyzVector< T > const & | p1, |
xyzVector< T > const & | p2, | ||
xyzVector< T > const & | p3, | ||
xyzVector< T > const & | p4, | ||
T & | angle | ||
) |
Dihedral (torsion) angle in degrees: angle value passed.
References basic::options::OptionKeys::hotspot::angle, dihedral_radians(), p2, and numeric::conversions::to_degrees().
Referenced by addcyclicconstraints(), align_carboxyl_m8(), align_native_state(), alncys(), ZincMatchFilter::apply(), calc_c3_rmsd(), ch_o_pdbstats_from_pose(), Tet4HMatchAligner::checkalign(), dihedral_degrees_double(), find_dsf(), fix_cyclic_termini(), generate_disulfide_conformations(), get_cys_rts(), Link::get_phi(), Link::get_psi(), get_rmsd(), get_rmsd_debug(), gpu_refold_test(), ik_his_clamp(), main(), my_main(), pdb_stats(), perturb_bb_and_relax(), pose2bin(), DisulfideBondEnergy::probability(), run(), run_diiron_glu(), run_sf4h(), set_disulf(), Link::set_phi(), Link::set_psi(), store_backbone(), storeposedata(), apps::public1::scenarios::chemically_conjugated_docking::ubq_ras_rotation_angle(), CovalentPeptidomimeticDockDesign::update_hydrogens(), and CovalentPeptidomimeticCreator::update_hydrogens().
|
inline |
References dihedral_degrees(), and p2.
|
inline |
References basic::options::OptionKeys::hotspot::angle, dihedral_degrees(), and p2.
|
inline |
References dihedral(), and p2.
|
inline |
References basic::options::OptionKeys::hotspot::angle, dihedral(), and p2.
T numeric::dihedral_radians | ( | xyzVector< T > const & | p1, |
xyzVector< T > const & | p2, | ||
xyzVector< T > const & | p3, | ||
xyzVector< T > const & | p4 | ||
) |
Dihedral (torsion) angle in radians: angle value returned.
References basic::options::OptionKeys::hotspot::angle, dihedral_radians(), and p2.
void numeric::dihedral_radians | ( | xyzVector< T > const & | p1, |
xyzVector< T > const & | p2, | ||
xyzVector< T > const & | p3, | ||
xyzVector< T > const & | p4, | ||
T & | angle | ||
) |
Dihedral (torsion) angle in radians: angle value passed.
References a, basic::options::OptionKeys::hotspot::angle, compute_difference::b, kmeans_adaptive_kernel_density_bb_dependent_rotlib::c, cross(), dot(), p2, x, and predPRE::y.
Referenced by dihedral(), dihedral_degrees(), numeric::deriv::dihedral_deriv_second(), dihedral_radians(), dihedral_radians_double(), gpu_refold_test(), main(), minimize_test(), print_internal_coord_test(), set_loop_conformation(), and write_chi_to_db().
|
inline |
References dihedral_radians(), and p2.
|
inline |
References basic::options::OptionKeys::hotspot::angle, dihedral_radians(), and p2.
|
inline |
References measure_params::norm().
Referenced by numeric::coordinate_fitting::FlatLookup< QueryType, EntryType, Real >::all_matches_below_threshold(), numeric::coordinate_fitting::FlatLookup< QueryType, EntryType, Real >::closest_match(), numeric::coordinate_fitting::FlatLookup< QueryType, EntryType, Real >::closest_match_subset(), numeric::deriv::distance_f1_f2_deriv(), numeric::coordinate_fitting::FlatLookup< QueryType, EntryType, Real >::first_match(), main(), and numeric::random::uniform_vector_sphere().
Distance.
|
inline |
Distance.
T numeric::distance_squared | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b | ||
) |
Distance squared.
Referenced by CountContact::apply(), InterfaceStrandFinderMover::bb_score(), ExposedStrandMover::bb_score(), HDmakerMover::bb_score(), best_beta_backbones::bump_check(), ClashCheck::clash_check(), MatchSet::clash_check(), clash_check_bb(), ClashCheck::clash_check_naive(), MatchSet::clash_check_naive(), clashcheck(), clashcheckhalf(), count_int_CBs_clashes(), ddg(), dock(), PoseWrap::dump_pdb(), pyrosetta.toolbox.atom_pair_energy::etable_atom_pair_energies(), Bola::get_target_distance(), ik_arg_asp_frnt(), ik_arg_asp_side(), ik_arg_glu_frnt(), ik_arg_glu_side(), ik_his_clamp(), ik_lys_ctp_asp(), ik_lys_ctp_glu(), main(), place_sf4(), repack_iface(), run(), run_diiron_glu(), run_m8(), run_tyr_his(), run_zn2his(), test(), and PoseWrap::update_designable_packable().
|
inline |
Distance squared.
|
inline |
Divide: xyzTriple / Value.
|
inline |
Divide: xyzVector / Value.
References a, and ObjexxFCL::abs().
Referenced by numeric::CalculatorParser::CalculatorParser().
void numeric::do_add_symbol | ( | CalculatorParser & | cp, |
std::string | name, | ||
double | value | ||
) |
References value.
Referenced by numeric::CalculatorParser::CalculatorParser().
References a.
Referenced by numeric::CalculatorParser::CalculatorParser().
References a.
Referenced by numeric::CalculatorParser::CalculatorParser().
Referenced by numeric::CalculatorParser::CalculatorParser().
References a, compute_difference::b, and log().
Referenced by numeric::CalculatorParser::CalculatorParser().
References a.
Referenced by numeric::CalculatorParser::CalculatorParser().
Referenced by numeric::CalculatorParser::CalculatorParser().
Referenced by numeric::CalculatorParser::CalculatorParser().
Referenced by numeric::CalculatorParser::CalculatorParser().
Referenced by numeric::CalculatorParser::CalculatorParser().
Referenced by numeric::CalculatorParser::CalculatorParser().
References a, compute_difference::b, and ObjexxFCL::pow().
Referenced by numeric::CalculatorParser::CalculatorParser().
References a.
Referenced by numeric::CalculatorParser::CalculatorParser().
References a.
Referenced by numeric::CalculatorParser::CalculatorParser().
References a.
Referenced by numeric::CalculatorParser::CalculatorParser().
Dot product.
Referenced by numeric::deriv::angle_p1_deriv(), numeric::deriv::angle_p1_p2_p3_deriv(), numeric::deriv::angle_p2_deriv(), angle_radians(), ccd_angle(), numeric::deriv::dihedral_p1_cosine_deriv_first(), numeric::deriv::dihedral_p2_cosine_deriv_first(), dihedral_radians(), numeric::xyzTransform< T >::intersect3D_2Planes(), numeric::deriv::p1_theta_deriv(), sicfast(), numeric::HomogeneousTransform< T >::to_local_coordinate(), and numeric::deriv::x_and_dtheta_dx().
Dot product.
Distance.
Distance squared
Dot product
Dot product.
Dot product.
|
inline |
Dot product.
Dot product.
References a, and compute_difference::b.
xyzVector< T > numeric::eigenvalue_jacobi | ( | xyzMatrix< T > const & | a, |
T const & | tol | ||
) |
Classic Jacobi algorithm for the eigenvalues of a real symmetric matrix.
xyzVector< T > numeric::eigenvector_jacobi | ( | xyzMatrix< T > const & | a, |
T const & | tol, | ||
xyzMatrix< T > & | J | ||
) |
Classic Jacobi algorithm for the eigenvalues and eigenvectors of a real symmetric matrix.
Referenced by numeric::model_quality::findUU(), get_euler_axes(), get_reflection_axis(), pca_align_BROKEN(), and principal_components_and_eigenvalues().
|
inline |
Equal within specified relative and absolute tolerances?
References ObjexxFCL::abs(), max(), min(), pyrosetta.distributed.cluster.exceptions::T, x, and predPRE::y.
Referenced by numeric::interpolation::bilinearly_interpolated(), and numeric::interpolation::Histogram< X, Y >::set_params().
|
inline |
are two Real values are equal up to some epsilon
implemented only for Reals, to prevent unsigned hassle (Barak 30/6/2009)
bool numeric::equal_length | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b | ||
) |
Equal length?
|
inline |
Equal length?
bool numeric::equal_length | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b | ||
) |
Equal length?
|
inline |
Equal length?
|
inline |
Evaluate cubic polynomial at value x given polynomial coefficients.
References x.
void numeric::expand_xforms | ( | OutputIterator | container, |
xyzTransform< T > const & | G1, | ||
xyzTransform< T > const & | G2, | ||
int | N = 5 , |
||
Real | r = 9e9 , |
||
xyzVector< T > const & | test_point = xyzVector<T>(Real(1.0),Real(3.0),Real(10.0)) |
||
) |
References expand_xforms(), N, and create_a3b_hbs::r.
void numeric::expand_xforms | ( | OutputIterator | container, |
xyzTransform< T > const & | G1, | ||
xyzTransform< T > const & | G2, | ||
xyzTransform< T > const & | , | ||
int | N = 5 , |
||
Real | r = 9e9 , |
||
xyzVector< T > const & | test_point = xyzVector<T>(Real(1.0),Real(3.0),Real(10.0)) |
||
) |
References create_a3b_hbs::i, test.T110_numeric::I, N, create_a3b_hbs::r, and x.
Referenced by TCDock::dump_pdb(), and expand_xforms().
Calculate the value of N!.
Dangerous for large values of N. Uses a recursive algorithm – might not be efficient and can't be inlined.
References N.
|
inline |
convert an FArray2D to a vector of xyzVectors
References gaussian-sampling::input, enumerate_junctions::int, bin_torsions::output, x, predPRE::y, and predPRE::z.
Referenced by numeric::model_quality::findUU().
|
inline |
convert a 3x3 FArray 2D to an xyzMatrix
References gaussian-sampling::input, and numeric::xyzMatrix< T >::rows().
Referenced by numeric::model_quality::findUU().
Remainder of x with respect to division by y that is of smallest magnitude.
References x, and predPRE::y.
T numeric::find_nearest_value | ( | typename utility::vector1< T > const & | input_list, |
T | key | ||
) |
given a vector and an input value, return the value in the vector that is closest to the input This is a wrapper for find_nearest_value(input_list,key,min,max) and insures that you're sorted.
References subloop_histogram::key.
T numeric::find_nearest_value | ( | typename utility::vector1< T > const & | input_list, |
T | key, | ||
platform::Size | min_index, | ||
platform::Size | max_index | ||
) |
recursive binary search that finds the value closest to key. Call find_nearest_value(input_list,value) instead. It's the driver function for this function. This fails miserably (and silently!) on a non-sorted vector, so don't do that!.
References ObjexxFCL::abs(), subloop_histogram::key, basic::options::OptionKeys::max_distance, and min_index().
|
inline |
return the first principal component of the given set of points
References principal_components().
References create_a3b_hbs::j, and kmeans_adaptive_kernel_density_bb_dependent_rotlib::v.
Greatest common divisor.
References kmeans_adaptive_kernel_density_bb_dependent_rotlib::m, max(), min(), mod(), kmeans_adaptive_kernel_density_bb_dependent_rotlib::n, and pyrosetta.distributed.cluster.exceptions::T.
Referenced by count_analytically_cyclic(), and count_analytically_improper_rotational().
|
inline |
Greater than or equal within specified relative and absolute tolerances?
References ObjexxFCL::abs(), max(), min(), pyrosetta.distributed.cluster.exceptions::T, x, and predPRE::y.
void numeric::get_cluster_data | ( | utility::vector1< T > & | data_in, |
ClusteringTreeNodeOP | cluster, | ||
utility::vector1< T > & | data_out | ||
) |
References basic::options::OptionKeys::optE::data_in, basic::options::OptionKeys::optE::data_out, and create_a3b_hbs::i.
Referenced by main().
Size numeric::get_Real_MathNTensor_dimension_size | ( | MathNTensorBaseCOP< Real > | tensorbase, |
Size const | dimension_index | ||
) |
Given a MathNTensorBaseCOP, get the size along one dimension.
References enumerate_junctions::default, utility::pointer::dynamic_pointer_cast(), runtime_assert, runtime_assert_string_msg, and utility_exit_with_message.
|
inline |
Greater than within specified relative and absolute tolerances?
References ObjexxFCL::abs(), max(), min(), pyrosetta.distributed.cluster.exceptions::T, x, and predPRE::y.
numeric::xyzVector< platform::Real > numeric::hsv_to_rgb | ( | numeric::xyzVector< platform::Real > | hsv_triplet | ) |
convert an HSV color to RGB
References enumerate_junctions::default, create_a3b_hbs::f, create_a3b_hbs::i, kmeans_adaptive_kernel_density_bb_dependent_rotlib::p, enumerate_junctions::q, predPRE::t, value, numeric::xyzVector< T >::x(), numeric::xyzVector< T >::y(), and numeric::xyzVector< T >::z().
numeric::xyzVector< platform::Real > numeric::hsv_to_rgb | ( | platform::Real | h, |
platform::Real | s, | ||
platform::Real | v | ||
) |
convert an HSV color to RGB
References h, docking::s, and kmeans_adaptive_kernel_density_bb_dependent_rotlib::v.
|
inline |
Is a sine or cosine value within a specified tolerance of the valid [-1,1] range?
References pyrosetta.distributed.cluster.exceptions::T, loops_kic::tol, and x.
T numeric::inner_product | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b | ||
) |
Inner product ( == dot product )
Referenced by hd(), and numeric::MathVector< T >::square_norm().
|
inline |
Inner product ( == dot product )
T numeric::inner_product | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b | ||
) |
Inner product ( == dot product )
|
inline |
Inner product ( == dot product )
xyzVector< T >& numeric::inplace_product | ( | xyzMatrix< T > const & | m, |
xyzVector< T > & | v | ||
) |
xyzMatrix * xyzVector in-place product
Referenced by numeric::BodyPosition< T >::invert(), numeric::BodyPosition< T >::operator()(), and numeric::BodyPosition< T >::transform().
xyzVector< T >& numeric::inplace_transpose_product | ( | xyzMatrix< T > const & | m, |
xyzVector< T > & | v | ||
) |
xyzMatrix^T * xyzVector in-place transpose product
Referenced by numeric::BodyPosition< T >::inverse_transform().
Referenced by alignVectorSets(), CrystFFTDock::apply(), CrystFFTDock::do_convolution(), generate_from_fiber(), get_primary_point_group(), CrystFFTDock::get_transform_distance(), numeric::linear_algebra::minimum_bounding_ellipse(), numeric::UniformRotationSampler::remove_redundant(), CrystFFTDock::resample_maps_and_get_self(), Spacegroup::set_parameters(), and slice_ellipsoid_envelope().
void numeric::jacobi_rotation | ( | xyzMatrix< T > const & | m, |
int const | i, | ||
int const | j, | ||
xyzMatrix< T > & | r | ||
) |
Jacobi rotation.
References ObjexxFCL::abs(), kmeans_adaptive_kernel_density_bb_dependent_rotlib::c, create_a3b_hbs::i, create_a3b_hbs::j, kmeans_adaptive_kernel_density_bb_dependent_rotlib::m, create_a3b_hbs::r, docking::s, and predPRE::t.
|
inline |
Less than or equal within specified relative and absolute tolerances?
References ObjexxFCL::abs(), max(), min(), pyrosetta.distributed.cluster.exceptions::T, x, and predPRE::y.
double numeric::linear_interpolate | ( | Value | start, |
Value | stop, | ||
unsigned | curr_stage, | ||
unsigned | num_stages | ||
) |
Linearly interpolates a quantity from start to stop over (num_stages + 1) stages.
References basic::options::OptionKeys::cutoutdomain::start.
Computes log(x) in the given base.
References test.T005_Bindings::base, and x.
Referenced by CountContact::apply(), PairDistance::apply(), ScTrials::apply(), calc_sequence_score(), calculate_binding_energy(), capri15_relax(), compute_bb_motif_score(), numeric::random::WeightedReservoirSampler< T >::consider_sample(), correct_rama(), dinucleotide_test(), do_ln(), do_log(), do_log2(), do_the_match(), each_aa_test(), DisulfideBondEnergy::evaluate(), numeric::random::RandomGenerator::gaussian(), pyrosetta.distributed.utility.log.ProgressLogger::increment(), numeric::statistics::kl_divergence(), pyrosetta.distributed.utility.log::log_method(), main(), mathntensor_from_dist(), motif_column_deviation(), DisulfideBondEnergy::rebuildAndDetectDisulfideBond(), core::pack::annealer::FixbbSimAnnealer::run(), score_rnp(), sidechain_sample(), sigmoid_train(), DisulfideBondEnergy::tabulate(), and numeric::statistics::w().
|
inline |
Less than within specified relative and absolute tolerances?
References ObjexxFCL::abs(), max(), min(), pyrosetta.distributed.cluster.exceptions::T, x, and predPRE::y.
MathVector< T > numeric::MakeVector | ( | T const & | X | ) |
|
inline |
References spectral_cluster_kmeans_adaptive_kernel_density_bb_dependent_rotlib::Y.
|
inline |
References spectral_cluster_kmeans_adaptive_kernel_density_bb_dependent_rotlib::Y.
References a, and compute_difference::b.
|
inline |
References a, and compute_difference::b.
|
inline |
References a, and compute_difference::b.
max( long double, long double )
References a, and compute_difference::b.
|
inline |
References a, and compute_difference::b.
|
inline |
References a, and compute_difference::b.
Referenced by abs_difference(), align_sf4(), align_zns(), alignaxis(), numeric::geometry::hashing::xyzStripeHash::clash(), numeric::geometry::hashing::xyzStripeHash::clash_amount(), numeric::geometry::hashing::xyzStripeHash::clash_check_ball(), numeric::geometry::hashing::xyzStripeHash::clash_not_resid(), numeric::geometry::hashing::xyzStripeHash::clash_raw(), numeric::CompleteLinkClusterer::comparator(), convex_hull(), do_max(), dock(), doit(), PoseWrap::dump_pdb(), eq_tol(), numeric::geometry::hashing::xyzStripeHash::fill_pairs(), find_farthest(), gcd(), ge_tol(), generate_combined_model(), get_nearest_loop_to_helix(), get_second_2_helices(), gt_tol(), numeric::geometry::hashing::xyzStripeHash::init(), numeric::geometry::hashing::xyzStripeHashWithMeta< T >::init(), MatchSet::init_clash_check(), ClashCheck::init_clash_check(), le_tol(), lt_tol(), max(), numeric::linear_algebra::minimum_bounding_ellipse(), numeric::geometry::hashing::xyzStripeHash::nbcount(), numeric::geometry::hashing::xyzStripeHashWithMeta< T >::nbcount(), numeric::geometry::hashing::xyzStripeHash::nbcount_raw(), place_zns(), run(), run_tyr_his(), numeric::kinematic_closure::sbisect(), numeric::interpolation::Histogram< X, Y >::set_params(), sicfast(), numeric::kinematic_closure::solve_sturm(), numeric::geometry::hashing::xyzStripeHashWithMeta< T >::visit(), numeric::geometry::hashing::xyzStripeHash::visit(), numeric::geometry::hashing::xyzStripeHash::visit_lax(), and numeric::geometry::hashing::xyzStripeHashWithMeta< T >::visit_lax().
max( a, b, c )
References a, compute_difference::b, and kmeans_adaptive_kernel_density_bb_dependent_rotlib::c.
|
inline |
max( a, b, c, d )
References a, compute_difference::b, kmeans_adaptive_kernel_density_bb_dependent_rotlib::c, and max().
|
inline |
max( a, b, c, d, e )
References a, compute_difference::b, kmeans_adaptive_kernel_density_bb_dependent_rotlib::c, test.T009_Exceptions::e, max(), and max().
|
inline |
max( a, b, c, d, e, f )
References a, compute_difference::b, kmeans_adaptive_kernel_density_bb_dependent_rotlib::c, test.T009_Exceptions::e, create_a3b_hbs::f, max(), and max().
max( unsigned int, unsigned int )
References a, and compute_difference::b.
max( unsigned long int, unsigned long int )
References a, and compute_difference::b.
max( unsigned short int, unsigned short int )
References a, and compute_difference::b.
T numeric::max | ( | utility::vector1< T > const & | values | ) |
References create_a3b_hbs::ii, max(), and test.T040_Types::values.
xyzTriple< T > numeric::max | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b | ||
) |
xyzTriple with max coordinates of two xyzTriples
|
inline |
xyzTriple with max coordinates of two xyzTriples
xyzVector< T > numeric::max | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b | ||
) |
xyzVector with max coordinates of two xyzVectors
|
inline |
xyzVector with max coordinates of two xyzVectors
numeric::Real numeric::mean | ( | utility::vector1< numeric::Real > const & | values | ) |
References value, and test.T040_Types::values.
Referenced by calc_zscore(), and do_mean().
numeric::Real numeric::median | ( | utility::vector1< numeric::Real > const & | values | ) |
Returns the median from a vector1 of Real values.
References test.T040_Types::values.
Referenced by do_median(), and main().
xyzTriple< T > numeric::midpoint | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b | ||
) |
Midpoint of 2 xyzTriples.
Referenced by HDmakerMover::apply(), HDmakerMover::find_midpoint(), fit_helix_in_map(), zinc_stats::ZincStatisticGenerator::recursively_model_rotamer_chis(), and zinc2_homodimer_setup::rollmove_to_inverse_C2_symmetry().
void numeric::midpoint | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b, | ||
xyzTriple< T > & | m | ||
) |
Midpoint of 2 xyzTriples: Return via argument (slightly faster)
|
inline |
Midpoint of 2 xyzTriples.
|
inline |
Midpoint of 2 xyzTriples: Return via argument (slightly faster)
xyzVector< T > numeric::midpoint | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b | ||
) |
Midpoint of 2 xyzVectors.
void numeric::midpoint | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b, | ||
xyzVector< T > & | m | ||
) |
Midpoint of 2 xyzVectors: Return via argument (slightly faster)
|
inline |
Midpoint of 2 xyzVectors.
|
inline |
Midpoint of 2 xyzVectors: Return via argument (slightly faster)
References a, and compute_difference::b.
|
inline |
References a, and compute_difference::b.
|
inline |
References a, and compute_difference::b.
min( long double, long double )
References a, and compute_difference::b.
|
inline |
References a, and compute_difference::b.
|
inline |
References a, and compute_difference::b.
Referenced by abs_difference(), add_symm_zns(), align_sf4(), align_zns(), alignaxis(), MatchSet::c2_linker_check_dist(), calculate_helical_parameters_helper(), numeric::geometry::hashing::xyzStripeHash::clash(), numeric::geometry::hashing::xyzStripeHash::clash_amount(), numeric::geometry::hashing::xyzStripeHash::clash_check_ball(), numeric::geometry::hashing::xyzStripeHash::clash_not_resid(), numeric::geometry::hashing::xyzStripeHash::clash_raw(), convex_hull(), do_min(), dock(), doit(), eq_tol(), numeric::geometry::hashing::xyzStripeHash::fill_pairs(), find_closest(), gcd(), ge_tol(), generate_combined_model(), get_second_2_helices(), gt_tol(), numeric::geometry::hashing::xyzStripeHash::init(), numeric::geometry::hashing::xyzStripeHashWithMeta< T >::init(), MatchSet::init_clash_check(), ClashCheck::init_clash_check(), le_tol(), lt_tol(), min(), numeric::geometry::hashing::xyzStripeHash::nbcount(), numeric::geometry::hashing::xyzStripeHashWithMeta< T >::nbcount(), numeric::geometry::hashing::xyzStripeHash::nbcount_raw(), place_zns(), Bola::random_close_phipsi_from_rama(), rg2d(), DisulfEpos::rms(), run_tyr_his(), numeric::kinematic_closure::sbisect(), numeric::interpolation::Histogram< X, Y >::set_params(), sicfast(), numeric::kinematic_closure::solve_sturm(), numeric::geometry::hashing::xyzStripeHashWithMeta< T >::visit(), numeric::geometry::hashing::xyzStripeHash::visit(), numeric::geometry::hashing::xyzStripeHash::visit_lax(), and numeric::geometry::hashing::xyzStripeHashWithMeta< T >::visit_lax().
min( a, b, c )
References a, compute_difference::b, and kmeans_adaptive_kernel_density_bb_dependent_rotlib::c.
|
inline |
min( a, b, c, d )
References a, compute_difference::b, kmeans_adaptive_kernel_density_bb_dependent_rotlib::c, and min().
|
inline |
min( a, b, c, d, e )
References a, compute_difference::b, kmeans_adaptive_kernel_density_bb_dependent_rotlib::c, test.T009_Exceptions::e, min(), and min().
|
inline |
min( a, b, c, d, e, f )
References a, compute_difference::b, kmeans_adaptive_kernel_density_bb_dependent_rotlib::c, test.T009_Exceptions::e, create_a3b_hbs::f, min(), and min().
min( unsigned int, unsigned int )
References a, and compute_difference::b.
min( unsigned long int, unsigned long int )
References a, and compute_difference::b.
min( unsigned short int, unsigned short int )
References a, and compute_difference::b.
T numeric::min | ( | utility::vector1< T > const & | values | ) |
References create_a3b_hbs::ii, min(), and test.T040_Types::values.
xyzTriple< T > numeric::min | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b | ||
) |
xyzTriple with min coordinates of two xyzTriples
|
inline |
xyzTriple with min coordinates of two xyzTriples
xyzVector< T > numeric::min | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b | ||
) |
xyzVector with min coordinates of two xyzVectors
|
inline |
xyzVector with min coordinates of two xyzVectors
x(mod y) computational modulo returning magnitude < | y | and sign of x
References x, and predPRE::y.
Referenced by bin_angle(), gcd(), numeric::interpolation::InterpolatedPotential< N >::get_indices(), JDmover::periodic_range(), numeric::RemainderSelector< T, bool >::remainder(), and numeric::RemainderSelector< T, true >::remainder().
x(mod y) mathematical modulo returning magnitude < | y | and sign of y
References x, and predPRE::y.
Referenced by angles_between_0_180(), numeric::interpolation::periodic_range::full::bilinearly_interpolated(), numeric::interpolation::periodic_range::half::bilinearly_interpolated(), numeric::interpolation::periodic_range::full::bin(), numeric::interpolation::periodic_range::half::bin(), numeric::interpolation::Histogram< X, Y >::bin_number(), numeric::interpolation::periodic_range::full::interpolated(), numeric::interpolation::periodic_range::half::interpolated(), nonnegative_principal_angle(), nonnegative_principal_angle_degrees(), and nonnegative_principal_angle_radians().
|
inline |
Multiply: Value * xyzTriple.
|
inline |
Multiply: Value * xyzVector.
|
inline |
Multiply: xyzTriple * Value.
|
inline |
Multiply: xyzVector * Value.
|
inline |
nearest< R >( x ): Nearest R
References docking::R, pyrosetta.distributed.cluster.exceptions::T, and x.
Referenced by numeric::kdtree::nearest_neighbor(), and numeric::kdtree::nearest_neighbors().
Nearest periodic value of angle to a base angle in radians.
References basic::options::OptionKeys::hotspot::angle, nearest_ssize(), and numeric::NumericTraits< T >::pi_2().
|
inline |
Nearest periodic value of angle to a base angle in degrees.
References basic::options::OptionKeys::hotspot::angle, nearest_ssize(), and pyrosetta.distributed.cluster.exceptions::T.
Referenced by compare_torsion_rmsd().
|
inline |
Nearest periodic value of angle to a base angle in radians.
References basic::options::OptionKeys::hotspot::angle, nearest_ssize(), and numeric::NumericTraits< T >::pi_2().
Referenced by dump_pose_diff().
|
inline |
nearest_int( x ): Nearest int
References sign(), pyrosetta.distributed.cluster.exceptions::T, and x.
|
inline |
nearest_size( x ): Nearest std::size_t
References sign(), pyrosetta.distributed.cluster.exceptions::T, and x.
nearest_ssize( x ): Nearest SSize
References sign(), pyrosetta.distributed.cluster.exceptions::T, and x.
Referenced by numeric::interpolation::periodic_range::half::bin(), numeric::FastRemainderSelector< T, bool >::fast_remainder(), numeric::FastRemainderSelector< T, true >::fast_remainder(), nearest_angle(), nearest_angle_degrees(), nearest_angle_radians(), numeric::RemainderSelector< T, bool >::remainder(), and numeric::RemainderSelector< T, true >::remainder().
|
inline |
nint( x ): Nearest int
References sign(), pyrosetta.distributed.cluster.exceptions::T, and x.
Positive principal value of angle in radians on [ 0, 2*pi )
References basic::options::OptionKeys::hotspot::angle, and modulo().
Positive principal value of angle in degrees on [ 0, 360 )
References basic::options::OptionKeys::hotspot::angle, modulo(), and pyrosetta.distributed.cluster.exceptions::T.
Referenced by get_omgphipsi_bins(), get_symm_corrected_angle(), main(), and symmetrize_map().
Positive principal value of angle in radians on [ 0, 2*pi )
References basic::options::OptionKeys::hotspot::angle, and modulo().
void numeric::normalize | ( | InputIterator | first, |
InputIterator | last | ||
) |
Normalizes elements on the range [first, last)
References create_a3b_hbs::first, and sum().
Referenced by cumulative(), and product().
bool numeric::not_equal_length | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b | ||
) |
Not equal length?
|
inline |
Not equal length?
bool numeric::not_equal_length | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b | ||
) |
Not equal length?
|
inline |
Not equal length?
References a, and compute_difference::b.
bool numeric::operator!= | ( | BodyPosition< T > const & | p1, |
BodyPosition< T > const & | p2 | ||
) |
|
inline |
compare to matrices for inequality
MATRIX_LHS | lhs matrix |
MATRIX_RHS | rhs matrix |
|
inline |
compare if all items in matrix are not equal to a given VALUE
MATRIX_LHS | matrix with values |
VALUE_RHS | value that is compared against |
References numeric::MathMatrix< T >::begin(), and numeric::MathMatrix< T >::end().
|
inline |
compare if all items in matrix are not equal to a given VALUE
VALUE_LHS | value that is compared against |
MATRIX_RHS | matrix with values |
|
inline |
|
inline |
|
inline |
|
inline |
multiply two matrixs of equal size by building the inner product yielding the scalar product
MATRIX_LHS | lhs matrix |
MATRIX_RHS | rhs matrix |
References numeric::MathMatrix< T >::get_number_cols(), numeric::MathMatrix< T >::get_number_rows(), create_a3b_hbs::i, create_a3b_hbs::j, and create_a3b_hbs::k.
|
inline |
multiply matrix with vector
MATRIX_LHS | lhs matrix |
VECTOR | vector to be multiplied |
References numeric::MathMatrix< T >::get_number_cols(), numeric::MathMatrix< T >::get_number_rows(), create_a3b_hbs::i, and create_a3b_hbs::j.
|
inline |
multiply matrix with scalar
MATRIX_LHS | lhs matrix |
SCALAR_RHS | rhs value to be multiplied |
|
inline |
multiply scalar with matrix
SCALAR_LHS | lhs value to be multiplied |
MATRIX_RHS | rhs matrix |
|
inline |
|
inline |
References numeric::MathVector< T >::begin(), and numeric::MathVector< T >::end().
|
inline |
xyzVector< T > numeric::operator* | ( | xyzMatrix< T > const & | m, |
xyzVector< T > const & | v | ||
) |
|
inline |
multiply matrix with scalar
MATRIX_LHS | matrix to multiply to |
SCALAR | scalar to be multiplied |
References numeric::MathMatrix< T >::begin(), numeric::MathMatrix< T >::end(), and basic::options::OptionKeys::mp::transform::transform.
|
inline |
sum two matrixs of equal size
MATRIX_LHS | lhs matrix |
MATRIX_RHS | rhs matrix |
|
inline |
add value to matrix
MATRIX_LHS | lhs matrix |
VALUE_RHS | rhs value to be added |
|
inline |
add matrix to value
VALUE_LHS | lhs value to be added |
MATRIX_RHS | rhs matrix |
|
inline |
|
inline |
|
inline |
|
inline |
|
inline |
add one matrix to another
MATRIX_LHS | matrix to add to |
MATRIX_RHS | matrix to add |
References numeric::MathMatrix< T >::begin(), numeric::MathMatrix< T >::end(), and basic::options::OptionKeys::mp::transform::transform.
|
inline |
add scalar to matrix
MATRIX_LHS | matrix to add to |
VALUE | scalar to be added |
References numeric::MathMatrix< T >::begin(), numeric::MathMatrix< T >::end(), and basic::options::OptionKeys::mp::transform::transform.
|
inline |
subtract two matrixs of equal size
MATRIX_LHS | lhs matrix |
MATRIX_RHS | rhs matrix |
|
inline |
subtract value from matrix
MATRIX_LHS | lhs matrix |
VALUE_RHS | rhs value to be subtracted |
|
inline |
subtract matrix from value
VALUE_LHS | rhs value to be subtracted |
MATRIX_RHS | lhs matrix |
References numeric::MathMatrix< T >::size().
|
inline |
References pyrosetta.distributed.cluster.exceptions::T.
|
inline |
|
inline |
|
inline |
|
inline |
subtract one matrix from another
MATRIX_LHS | matrix to subtract from |
MATRIX_RHS | matrix to subtract |
References numeric::MathMatrix< T >::begin(), numeric::MathMatrix< T >::end(), and basic::options::OptionKeys::mp::transform::transform.
|
inline |
subtract scalar from matrix
MATRIX_LHS | matrix to subtract from |
VALUE | scalar to be added |
References numeric::MathMatrix< T >::begin(), numeric::MathMatrix< T >::end(), and basic::options::OptionKeys::mp::transform::transform.
|
inline |
divide matrix with scalar
MATRIX_LHS | lhs matrix |
SCALAR_RHS | rhs value to be divided by |
|
inline |
divide scalar by matrix
SCALAR_LHS | lhs value to be divided |
MATRIX_RHS | rhs matrix to be used to divide the scalar |
References numeric::MathMatrix< T >::size().
|
inline |
|
inline |
|
inline |
|
inline |
divide one matrix by another
MATRIX_LHS | matrix to divided |
MATRIX_RHS | matrix to divide by |
|
inline |
divide matrix by scalar
MATRIX_LHS | matrix to divide |
SCALAR | scalar to divide by |
References numeric::MathMatrix< T >::begin(), numeric::MathMatrix< T >::end(), and basic::options::OptionKeys::mp::transform::transform.
std::ostream & numeric::operator<< | ( | ostream & | out, |
const Polynomial_1d & | poly | ||
) |
References erraser_single_res_analysis::out.
std::ostream & numeric::operator<< | ( | std::ostream & | os, |
MultiDimensionalHistogram const & | mdhist | ||
) |
References numeric::MultiDimensionalHistogram::counts(), numeric::MultiDimensionalHistogram::dim_labels(), numeric::MultiDimensionalHistogram::end(), create_a3b_hbs::i, numeric::MultiDimensionalHistogram::label(), numeric::MultiDimensionalHistogram::num_bins(), numeric::MultiDimensionalHistogram::num_dimensions(), subloop_histogram::size, and numeric::MultiDimensionalHistogram::start().
std::ostream& numeric::operator<< | ( | std::ostream & | out, |
VoxelArray< F, V > const & | v | ||
) |
|
inline |
std::ostream& numeric::operator<< | ( | std::ostream & | stream, |
BodyPosition< T > const & | p | ||
) |
stream << BodyPosition output operator
References kmeans_adaptive_kernel_density_bb_dependent_rotlib::p, docking::R, basic::options::OptionKeys::ufv::right, predPRE::t, ObjexxFCL::uppercase(), w, and basic::options::OptionKeys::mp::visualize::width.
|
inline |
References numeric::HomogeneousTransform< T >::show().
std::ostream& numeric::operator<< | ( | std::ostream & | stream, |
HomogeneousTransform< T > const & | ht | ||
) |
std::ostream& numeric::operator<< | ( | std::ostream & | stream, |
Quaternion< T > const & | q | ||
) |
stream << Quaternion output operator
References enumerate_junctions::q, basic::options::OptionKeys::ufv::right, ObjexxFCL::uppercase(), w, and basic::options::OptionKeys::mp::visualize::width.
std::ostream& numeric::operator<< | ( | std::ostream & | stream, |
xyzMatrix< T > const & | m | ||
) |
stream << xyzMatrix output operator
References kmeans_adaptive_kernel_density_bb_dependent_rotlib::m, basic::options::OptionKeys::ufv::right, ObjexxFCL::uppercase(), w, and basic::options::OptionKeys::mp::visualize::width.
std::ostream& numeric::operator<< | ( | std::ostream & | stream, |
xyzTransform< T > const & | m | ||
) |
stream << xyzTransform output operator
References basic::options::OptionKeys::hotspot::angle, numeric::conversions::degrees(), ObjexxFCL::format::F(), kmeans_adaptive_kernel_density_bb_dependent_rotlib::m, rotation_axis(), pyrosetta.distributed.cluster.exceptions::T, numeric::xyzVector< T >::x(), numeric::xyzVector< T >::y(), and numeric::xyzVector< T >::z().
std::ostream& numeric::operator<< | ( | std::ostream & | stream, |
xyzTriple< T > const & | v | ||
) |
stream << xyzTriple output operator
References basic::options::OptionKeys::ufv::right, ObjexxFCL::uppercase(), kmeans_adaptive_kernel_density_bb_dependent_rotlib::v, w, and basic::options::OptionKeys::mp::visualize::width.
std::ostream& numeric::operator<< | ( | std::ostream & | stream, |
xyzVector< T > const & | v | ||
) |
stream << xyzVector output operator
References basic::options::OptionKeys::ufv::right, ObjexxFCL::uppercase(), kmeans_adaptive_kernel_density_bb_dependent_rotlib::v, w, and basic::options::OptionKeys::mp::visualize::width.
bool numeric::operator== | ( | BodyPosition< T > const & | p1, |
BodyPosition< T > const & | p2 | ||
) |
|
inline |
compare to matricess for equality
MATRIX_LHS | lhs matrix |
MATRIX_RHS | rhs matrix |
References numeric::MathMatrix< T >::begin(), numeric::MathMatrix< T >::end(), and ObjexxFCL::equal().
|
inline |
compare if all items in matrix are equal to a given VALUE
MATRIX_LHS | matrix with values |
VALUE_RHS | value that is compared against |
References numeric::MathMatrix< T >::begin(), and numeric::MathMatrix< T >::end().
|
inline |
compare if all items in matrix are equal to a given VALUE
VALUE_LHS | value that is compared against |
MATRIX_RHS | matrix with values |
|
inline |
References numeric::MathVector< T >::begin(), numeric::MathVector< T >::end(), and ptr().
|
inline |
References numeric::MathVector< T >::begin(), numeric::MathVector< T >::end(), and numeric::MathVector< T >::size().
|
inline |
std::istream& numeric::operator>> | ( | std::istream & | stream, |
BodyPosition< T > & | p | ||
) |
stream >> BodyPosition input operator
References kmeans_adaptive_kernel_density_bb_dependent_rotlib::p, docking::R, read_row(), and predPRE::t.
std::istream& numeric::operator>> | ( | std::istream & | stream, |
Quaternion< T > & | q | ||
) |
stream >> Quaternion input operator
References enumerate_junctions::q.
std::istream& numeric::operator>> | ( | std::istream & | stream, |
xyzMatrix< T > & | m | ||
) |
stream >> xyzMatrix input operator
References kmeans_adaptive_kernel_density_bb_dependent_rotlib::m, and read_row().
std::istream& numeric::operator>> | ( | std::istream & | stream, |
xyzTransform< T > & | m | ||
) |
stream >> xyzTransform input operator
References kmeans_adaptive_kernel_density_bb_dependent_rotlib::m.
std::istream& numeric::operator>> | ( | std::istream & | stream, |
xyzTriple< T > & | v | ||
) |
stream >> xyzTriple input operator
References kmeans_adaptive_kernel_density_bb_dependent_rotlib::v.
std::istream& numeric::operator>> | ( | std::istream & | stream, |
xyzVector< T > & | v | ||
) |
stream >> xyzVector input operator
References kmeans_adaptive_kernel_density_bb_dependent_rotlib::v.
|
inline |
References numeric::MathVector< T >::begin(), numeric::MathVector< T >::end(), and ObjexxFCL::pow().
xyzMatrix< T > numeric::outer_product | ( | xyzVector< T > const & | a, |
xyzVector< T > const & | b | ||
) |
xyzVector xyzVector outer product
Referenced by Tensor::add(), line_cone_intersection(), and pca_align_BROKEN().
Principal value of angle in radians on ( -pi, pi ].
References basic::options::OptionKeys::hotspot::angle, and remainder().
Referenced by morph_by_internal_coords().
Principal value of angle in degrees on ( -180, 180 ].
References basic::options::OptionKeys::hotspot::angle, remainder(), and pyrosetta.distributed.cluster.exceptions::T.
Referenced by adjust_pose_chi(), angle_diff(), B3AADihedralGrabber::apply(), copy_rotamerized_torsions(), count_bins(), fix_alpha_for_pack_phosphate(), get_omgphipsi_bins(), hack_create_torsion_value_string(), has_cis_bonds(), and sidechain_sample().
Principal value of angle in radians on ( -pi, pi ].
References basic::options::OptionKeys::hotspot::angle, and remainder().
|
inline |
return a vector containing the eigenvalues corresponding to the first 3 principal components of the given set of points.
References principal_components_and_eigenvalues().
|
inline |
return a matrix containing the first 3 principal components of the given set of points. Matrix columns are principal components, first column is first component, etc.
References principal_components_and_eigenvalues().
Referenced by first_principal_component().
|
inline |
return a pair containing a matrix of the first 3 principal components and a vector of the corresponding eigenvalues of the given set of points.
References numeric::xyzMatrix< T >::col(), numeric::xyzMatrix< T >::col_x(), numeric::xyzMatrix< T >::col_y(), numeric::xyzMatrix< T >::col_z(), eigenvector_jacobi(), create_a3b_hbs::first, create_a3b_hbs::i, create_a3b_hbs::j, create_a3b_hbs::k, numeric::xyzVector< T >::x(), numeric::xyzVector< T >::y(), and numeric::xyzVector< T >::z().
Referenced by principal_component_eigenvalues(), and principal_components().
|
inline |
Return a pair containing a matrix (vector of vectors) of all of the principal components and a vector of the corresponding eigenvalues of the given set of points in n-dimensional space.
Note that this does not assume that the input vectors are 3-dimensional. If shift_center=false, the mean vector is not subtracted by this function. (Failure to subtract mean vector prior to function call will produce odd results, however.)
References create_a3b_hbs::i, create_a3b_hbs::j, create_a3b_hbs::k, runtime_assert_string_msg, and subloop_histogram::size.
Referenced by main(), and shift_center_and_PCA().
void numeric::print_probabilities | ( | const utility::vector1< double > & | probs, |
std::ostream & | out | ||
) |
Writes probs to the specified ostream.
References create_a3b_hbs::i.
void numeric::product | ( | ForwardIterator | probs1_first, |
ForwardIterator | probs1_last, | ||
ForwardIterator | probs2_first, | ||
ForwardIterator | probs2_last | ||
) |
Multiplies two probability vectors with one another. Probability vectors are assumed to have equal lengths.
References create_a3b_hbs::i, create_a3b_hbs::j, and normalize().
Referenced by cartesian_product(), numeric::interpolation::InterpolatedPotential< N >::dimension(), main(), detail::multiply(), numeric::HomogeneousTransform< T >::operator*(), place_water_acceptor(), place_water_donor(), and numeric::BodyPosition< T >::transformed().
|
inline |
References proj_angl().
|
inline |
References proj_angl().
|
inline |
References test.T400_Refinement::ab, basic::options::OptionKeys::hotspot::angle, max(), min(), and pyrosetta.distributed.cluster.exceptions::T.
Referenced by proj_angl().
geometric center
Projection matrix onto the line through a vector
Referenced by align_carboxyl_diiron(), ik_his4(), ik_his_clamp(), intersecting_bpy_axes(), main(), proj(), projperp(), run(), run_diiron_glu(), and test_MAT_VEC().
|
inline |
Interconvert Quaternion <=> Rotation Matrix.
References docking::Q, docking::R, xx, test.T110_numeric::xy, test.T110_numeric::xz, yy, test.T110_numeric::yz, and test.T110_numeric::zz.
Referenced by numeric::AxisRotationSampler::AxisRotationSampler().
|
inline |
Interconvert Quaternion <=> Rotation Matrix.
References docking::Q, docking::R, and pyrosetta.distributed.cluster.converters::S.
void numeric::read_probabilities_or_die | ( | const std::string & | filename, |
utility::vector1< double > * | probs | ||
) |
Loads normalized, per-residue probabilities from filename, storing the result in probs. Assumes line i holds the probability of sampling residue i. There must be 1 line for each residue in the pose on which this data will be used.
References lactamize::filename, basic::options::OptionKeys::in::in, kmeans_adaptive_kernel_density_bb_dependent_rotlib::p, and utility_exit_with_message.
std::istream& numeric::read_row | ( | std::istream & | stream, |
T & | x, | ||
T & | y, | ||
T & | z | ||
) |
Read an xyzMatrix row from a stream.
References x, predPRE::y, and predPRE::z.
std::istream& numeric::read_row | ( | std::istream & | stream, |
T & | x, | ||
T & | y, | ||
T & | z, | ||
T & | t | ||
) |
Read an BodyPosition row from a stream.
References predPRE::t, x, predPRE::y, and predPRE::z.
Referenced by operator>>().
void numeric::read_tensor_from_file | ( | std::string const & | filename, |
MathNTensor< T, N > & | tensor | ||
) |
References lactamize::filename, basic::options::OptionKeys::ddg::json, and read_tensor_from_file().
void numeric::read_tensor_from_file | ( | std::string const & | filename_input, |
MathNTensor< T, N > & | tensor, | ||
utility::json_spirit::mObject & | json | ||
) |
References utility::io::izstream::close(), utility::io::oc::cout, data, file_exists(), lactamize::filename, utility::json_spirit::get_mArray(), utility::json_spirit::Value_impl< Config >::get_obj(), utility::json_spirit::get_string_or_empty(), create_a3b_hbs::i, basic::options::OptionKeys::in::in, basic::options::OptionKeys::ddg::json, kmeans_adaptive_kernel_density_bb_dependent_rotlib::n, N, utility::io::izstream::read(), utility::replace_in(), runtime_assert, loops_kic::success, pyrosetta.distributed.cluster.exceptions::T, utility_exit_with_message, value, and write_tensor_to_file_without_json().
Referenced by read_tensor_from_file(), and read_tensor_test().
Remainder of x with respect to division by y that is of smallest magnitude.
References x, and predPRE::y.
Referenced by zlib_stream::basic_zip_streambuf< Elem, Tr, ElemA, ByteT, ByteAT >::flush(), detail::get_round_direction(), detail::grisu_gen_digits(), id2torsion(), my_main(), detail::fixed_handler::on_digit(), detail::fixed_handler::on_start(), principal_angle(), principal_angle_degrees(), principal_angle_radians(), detail::dragonbox::remove_trailing_zeros(), zlib_stream::basic_unzip_streambuf< Elem, std::char_traits< Elem >, std::allocator< Elem >, unsigned char, std::allocator< unsigned char > >::underflow(), and zlib_stream::basic_zip_streambuf< Elem, Tr, ElemA, ByteT, ByteAT >::zip_to_stream().
Remainder and result of conversion to a different type.
References docking::s, pyrosetta.distributed.cluster.converters::S, and predPRE::t.
numeric::xyzVector< platform::Real > numeric::rgb_to_hsv | ( | numeric::xyzVector< platform::Real > | rgb_triplet | ) |
convert and RGB color to HSV
References blue, green, numeric::xyzVector< T >::maximum_value(), numeric::xyzVector< T >::minimum_value(), red, numeric::xyzVector< T >::x(), numeric::xyzVector< T >::y(), and numeric::xyzVector< T >::z().
numeric::xyzVector< platform::Real > numeric::rgb_to_hsv | ( | platform::Real | r, |
platform::Real | g, | ||
platform::Real | b | ||
) |
convert an RGB color to HSV
References compute_difference::b, g(), and create_a3b_hbs::r.
Transformation from rotation matrix to magnitude of helical rotation.
References ObjexxFCL::abs(), numeric::NumericTraits< T >::pi(), docking::R, sin_cos_range(), and basic::options::OptionKeys::loops::ccd::tolerance.
Referenced by numeric::EulerAngles< T >::angular_distance_between().
Transformation from rotation matrix to helical axis of rotation.
Referenced by MatchSet::cross(), dock(), MyRT::from_rot(), main(), operator<<(), numeric::random::random_rotation_angle(), and rotation_axis_angle().
Transformation from rotation matrix to compact axis-angle representation.
References docking::R, rotation_axis(), and vec().
xyzMatrix< T > numeric::rotation_matrix | ( | xyzVector< T > const & | axis, |
T const & | theta | ||
) |
Rotation matrix for rotation about an axis by an angle in radians.
Referenced by numeric::xyzTransform< T >::align(), SymRBMover::apply(), bk_test(), numeric::alignment::QCPKernel< Real >::calc_coordinate_superposition(), HubDenovo::cen_fold(), change_docking_pose(), MatchSet::cross(), isctfast(), main(), rb_entropy_test(), numeric::xyzTransform< T >::rot(), rotation_matrix(), rotation_matrix_degrees(), rotation_matrix_radians(), zinc1_homodimer_design::setup_rollmoving(), sicfast(), slice_ellipsoid_envelope(), test_MAT_VEC(), and transform_pose().
|
inline |
References axis_angle(), and rotation_matrix().
|
inline |
Rotation matrix for rotation about an axis by an angle in degrees.
References numeric::conversions::radians(), and rotation_matrix().
Referenced by TCDock::__dock_base__(), align_carboxyl_diiron(), align_carboxyl_diiron_OLD(), Tet4HMatchAligner::align_rot(), Hit::apply(), ArchP4_42::ArchP4_42(), ArchP4g_42d::ArchP4g_42d(), ArchP4m_42d::ArchP4m_42d(), ArchP6_32::ArchP6_32(), ArchP6m_32d::ArchP6m_32d(), change_floating_sc_geometry(), ClashCheck::clash_check_trimer(), MatchSet::cross(), cxdock_design(), design_hits(), dock(), doit(), dostuff(), TCDock::dump_pdb(), TCDock::dump_top_hits(), find_dsf(), numeric::random::gaussian_random_xform(), TCDock::get_best_sub1_contact_delta_rotations(), TCDock::get_cmp1(), TCDock::get_cmp2(), iface_check_c3(), ik_arg_asp_frnt(), ik_arg_asp_side(), ik_arg_glu_frnt(), ik_arg_glu_side(), ik_his_clamp(), Arch::init(), intersecting_bpy_axes(), intersecting_disulfide_axes(), is_near_C2Z_iface(), main(), make_dock_olig(), make_two_trimers(), TCDock::min_termini_dis(), TCDock::min_termini_proj(), TCDock::precompute_intra(), numeric::xyzTransform< T >::rot_deg(), rot_pose(), run(), TCDock::run(), run_diiron_glu(), run_m8(), set_disulf(), Arch::slide_axis(), TCDock::swap_axis(), TCDock::swap_axis_rotation(), test_chi_xform(), testone(), visualize(), Arch::xform1(), and Arch::xform2().
|
inline |
References oop_conformations::angles.
|
inline |
References oop_conformations::angles.
|
inline |
References oop_conformations::angles.
|
inline |
Rotation matrix for rotation about an axis by an angle in radians.
References rotation_matrix().
Referenced by make_helix(), and map_morph().
T numeric::scalar_product | ( | MathVector< T > const & | VECTOR_A, |
MathVector< T > const & | VECTOR_B | ||
) |
Secant.
References pyrosetta.distributed.cluster.exceptions::T, and x.
Referenced by get_sequence_and_secstruct_from_dssp(), get_t033_ss(), map_sec(), and set_secstruct_from_psipred_ss2().
|
inline |
Convert vector to a json_spirit Value.
References utility::tools::make_vector(), x, numeric::xyzVector< T >::x(), predPRE::y, numeric::xyzVector< T >::y(), predPRE::z, and numeric::xyzVector< T >::z().
|
inline |
sign( x )
References pyrosetta.distributed.cluster.exceptions::T, and x.
Referenced by HubDenovo::cen_fold(), numeric::NearestSelector< R, T, true >::nearest(), nearest_int(), nearest_size(), nearest_ssize(), nint(), and urs_R2ang().
|
inline |
Sign transfered value.
References ObjexxFCL::abs(), pyrosetta.distributed.cluster.converters::S, spectral_cluster_kmeans_adaptive_kernel_density_bb_dependent_rotlib::sigma, and x.
Referenced by numeric::model_quality::rms_fit(), numeric::model_quality::rmsfitca2(), and numeric::model_quality::rmsfitca3().
Adjust a sine or cosine value to the valid [-1,1] range if within a specified tolerance or exit with an error.
References utility::io::oc::cerr, utility::io::oc::cout, CREATE_EXCEPTION, pyrosetta.distributed.cluster.exceptions::T, loops_kic::tol, utility_exit, and x.
Referenced by angle_of(), angle_radians(), arccos(), cos_of(), euler_angles_from_rotation_matrix_ZXZ(), euler_angles_from_rotation_matrix_ZYX(), euler_angles_from_rotation_matrix_ZYZ(), numeric::HomogeneousTransform< T >::euler_angles_rad(), numeric::xyzTransform< T >::euler_angles_rad(), numeric::EulerAngles< T >::from_rotation_matrix(), random_unit_vector(), rotation_angle(), numeric::xyzTransform< T >::rotation_cosine(), and numeric::xyzTransform< T >::rotation_sine().
Sine of angle between two vectors.
T numeric::sin_of | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b, | ||
xyzTriple< T > const & | c | ||
) |
Sine of angle formed by three consecutive points.
|
inline |
Sine of angle between two vectors.
|
inline |
Sine of angle formed by three consecutive points.
|
inline |
Sine of angle between two vectors.
References a, compute_difference::b, cos_of(), square(), and docking::U.
Referenced by sin_of().
|
inline |
Sine of angle formed by three consecutive points.
References a, compute_difference::b, kmeans_adaptive_kernel_density_bb_dependent_rotlib::c, and sin_of().
|
inline |
square( x ) == x^2
References x.
Referenced by CapriTotalEnergy::finalize_total_energy(), find_neighbors(), MatchSet::init_clash_check(), ClashCheck::init_clash_check(), numeric::model_quality::maxsub(), run_pep_prep(), CapriTotalEnergy::score_experimental_constraints(), Spacegroup::set_parameters(), sin_of(), numeric::fourier::SHT::so3_correlate(), and numeric::fourier::SHT::sph_standardize().
|
inline |
Subtract: Value - xyzTriple.
|
inline |
Subtract: Value - xyzVector.
void numeric::subtract | ( | xyzTriple< T > const & | a, |
xyzTriple< T > const & | b, | ||
xyzTriple< T > & | r | ||
) |
Subtract: xyzTriple - xyzTriple.
Referenced by util::get_surrounding_res().
|
inline |
Subtract: xyzTriple - Value.
|
inline |
Subtract: xyzVector - Value.
double numeric::sum | ( | InputIterator | first, |
InputIterator | last | ||
) |
Returns the sum of all elements on the range [first, last)
References create_a3b_hbs::first.
Referenced by calc_zscore(), numeric::nls::lm_lmdif(), numeric::nls::lm_lmpar(), numeric::nls::lm_qrfac(), numeric::nls::lm_qrsolv(), main(), and normalize().
References create_a3b_hbs::j, and kmeans_adaptive_kernel_density_bb_dependent_rotlib::v.
xyzVector< T > numeric::transpose_product | ( | xyzMatrix< T > const & | m, |
xyzVector< T > const & | v | ||
) |
xyzMatrix^T * xyzVector product
Referenced by numeric::BodyPosition< T >::inverse_transformed(), and numeric::BodyPosition< T >::inverse_translation().
std::string numeric::truncate_and_serialize_xyz_vector | ( | xyzVector< T > | vector, |
Real | precision | ||
) |
References basic::options::OptionKeys::optE::fixed.
|
inline |
References a, and compute_difference::b.
References a, compute_difference::b, and kmeans_adaptive_kernel_density_bb_dependent_rotlib::c.
Referenced by urs_R2ang().
|
inline |
|
inline |
convert a vector1 of xyzVectors to an FArray2D
References gaussian-sampling::input, enumerate_junctions::int, bin_torsions::output, x, predPRE::y, and predPRE::z.
Wrap the given angle in the range [-180, 180).
No conversion to degrees is implied.
References basic::options::OptionKeys::hotspot::angle.
Wrap the given angle in the range [0, 2 * pi).
No conversion to radians is implied.
References basic::options::OptionKeys::hotspot::angle.
Referenced by numeric::kinematic_closure::radians::torsion().
Wrap the given angle in the range [0, 360).
No conversion to degrees is implied.
References basic::options::OptionKeys::hotspot::angle.
Wrap the given angle in the range [-pi, pi).
No conversion to radians is implied.
References basic::options::OptionKeys::hotspot::angle, and numeric::NumericTraits< T >::pi().
bool numeric::write_tensor_to_file | ( | std::string const & | filename, |
MathNTensor< T, N > const & | tensor | ||
) |
bool numeric::write_tensor_to_file | ( | std::string const & | filename, |
MathNTensor< T, N > const & | tensor, | ||
utility::json_spirit::Value const & | json_input | ||
) |
References utility::io::ozstream::close(), lactamize::filename, utility::io::ozstream::good(), basic::options::OptionKeys::ddg::json, erraser_single_res_analysis::out, utility::replace_in(), loops_kic::success, utility_exit_with_message, detail::write(), and write_tensor_to_file_without_json().
Referenced by my_main(), and write_tensor_to_file().
bool numeric::write_tensor_to_file_without_json | ( | std::string const & | filename, |
MathNTensor< T, N > const & | tensor | ||
) |
References utility::io::ozstream::close(), numeric::MathNTensor< T, N >::data(), lactamize::filename, utility::io::ozstream::good(), erraser_single_res_analysis::out, numeric::MathNTensor< T, N >::size(), pyrosetta.distributed.cluster.exceptions::T, and utility::io::ozstream::write().
Referenced by read_tensor_from_file(), and write_tensor_to_file().
Rotation matrix for rotation about the x axis by an angle in radians.
References numeric::xyzMatrix< T >::rows(), and pyrosetta.distributed.cluster.exceptions::T.
Referenced by x_rotation_matrix_degrees(), and x_rotation_matrix_radians().
Rotation matrix for rotation about the x axis by an angle in degrees.
References numeric::conversions::radians(), and x_rotation_matrix().
Referenced by MyRotMover::apply(), DetectSymmetry::apply(), compute_chi(), dostuff(), get_rmsd(), get_rmsd_debug(), main(), move_jump(), move_pose(), place_water_acceptor(), place_water_donor(), numeric::random::random_rotation_angle(), DisulfideBondEnergy::rebuildAndDetectDisulfideBond(), rotatePoint(), numeric::HomogeneousTransform< T >::set_xaxis_rotation_deg(), and DisulfideBondEnergy::tabulate().
Rotation matrix for rotation about the x axis by an angle in radians.
References x_rotation_matrix().
Referenced by main(), and numeric::HomogeneousTransform< T >::set_xaxis_rotation_rad().
sphericalVector< T > numeric::xyz_to_spherical | ( | xyzVector< T > const & | xyz | ) |
|
inline |
convert an xyzMatrix to a 3x3 FArray 2D
References gaussian-sampling::input, and bin_torsions::output.
Rotation matrix for rotation about the y axis by an angle in radians.
References numeric::xyzMatrix< T >::rows(), and pyrosetta.distributed.cluster.exceptions::T.
Referenced by y_rotation_matrix_degrees(), and y_rotation_matrix_radians().
Rotation matrix for rotation about the y axis by an angle in degrees.
References numeric::conversions::radians(), and y_rotation_matrix().
Referenced by MyRotMover::apply(), DetectSymmetry::apply(), SwapElementsMover2::apply(), dock(), main(), numeric::random::random_rotation_angle(), and numeric::HomogeneousTransform< T >::set_yaxis_rotation_deg().
Rotation matrix for rotation about the y axis by an angle in radians.
References y_rotation_matrix().
Referenced by main(), and numeric::HomogeneousTransform< T >::set_yaxis_rotation_rad().
Rotation matrix for rotation about the z axis by an angle in radians.
References numeric::xyzMatrix< T >::rows(), and pyrosetta.distributed.cluster.exceptions::T.
Referenced by dock(), zinc1_homodimer_design::setup_rollmoving(), z_rotation_matrix_degrees(), and z_rotation_matrix_radians().
Rotation matrix for rotation about the z axis by an angle in degrees.
References numeric::conversions::radians(), and z_rotation_matrix().
Referenced by MyRotMover::apply(), DetectSymmetry::apply(), SwapElementsMover2::apply(), dock(), get_rmsd(), get_rmsd_debug(), main(), place_water_acceptor(), numeric::random::random_rotation_angle(), and numeric::HomogeneousTransform< T >::set_zaxis_rotation_deg().
Rotation matrix for rotation about the z axis by an angle in radians.
References z_rotation_matrix().
Referenced by compute_chi(), main(), DisulfideBondEnergy::rebuildAndDetectDisulfideBond(), numeric::HomogeneousTransform< T >::set_zaxis_rotation_rad(), and DisulfideBondEnergy::tabulate().